
Physics of Light and Optics

Justin Peatross
Michael Ware

Brigham Young University

2015 Edition
April 4, 2024 Revision



Copyright ©2024 Justin Peatross and Michael Ware

All rights reserved. The authors retain the copyright to this book. However, the content is
available free of charge at optics.byu.edu. This book may be downloaded, printed, and
distributed freely as long this copyright notice is included. Any use of a portion of this
book’s content as part of another other work requires the express written permission of
the authors.

ISBN 978-1-312-92927-2

https://optics.byu.edu/textbook


Preface

This curriculum was originally developed for a fourth-year undergraduate optics
course in the Department of Physics and Astronomy at Brigham Young University.
Topics are addressed from a physics perspective and include the propagation of
light in matter, reflection and transmission at boundaries, polarization effects,
dispersion, coherence, ray optics and imaging, diffraction, and the quantum
nature of light. Students using this book should be familiar with differentiation,
integration, and standard trigonometric and algebraic manipulation. A brief
review of complex numbers, vector calculus, and Fourier transforms is provided
in Chapter 0, but it is helpful if students already have some experience with these
concepts before starting the course.

While the authors retain the copyright, we have made this book available free
of charge at optics.byu.edu. This is our contribution toward a future world with
free textbooks! The web site also provides a link to purchase bound copies of the
book for the cost of printing. A collection of electronic material related to the
text is available at the same site, including videos of students performing the lab
assignments found in the book.

The development of optics has a rich history. We have included historical
sketches for a selection of the pioneers in the field to help students appreciate
some of this historical context. These sketches are not intended to be author-
itative; the information for most individuals has been gleaned primarily from
Wikipedia.

The authors may be contacted at opticsbook@byu.edu. We enjoy hearing
reports from those using the book and welcome constructive feedback. We revise
the text on approximately an annual basis to fix errors as we find them and to
improve the text. The title page indicates the date of the last revision.

We would like to thank all those who have helped improve this material. We
especially thank John Colton, Bret Hess, and Harold Stokes for their careful review
and extensive suggestions. This curriculum originally benefitted from a CCLI
grant from the National Science Foundation Division of Undergraduate Education
(DUE-9952773).
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Chapter 0

Mathematical Tools

Before moving on to chapter 1 where our study of optics begins, it would be good
to look over this chapter to make sure you are comfortable with the mathematical
tools we’ll be using. The vector calculus information in section 0.1 is used straight
away in Chapter 1, so you should review it now. In Section 0.2 we review complex
numbers. You have probably had some exposure to complex numbers, but if you
are like many students, you haven’t yet fully appreciated their usefulness. Your
life will be much easier if you understand the material in section 0.2 by heart.
Complex notation is pervasive throughout the book, beginning in chapter 2.

You may safely procrastinate reviewing Sections 0.3 and 0.4 until they come
up in the book. The linear algebra refresher in Section 0.3 is useful for Chapter 4,
where we analyze multilayer coatings, and again in Chapter 6, where we discuss
polarization. Section 0.4 provides an introduction to Fourier theory. Fourier trans-
forms are used extensively in optics, and you should study Section 0.4 carefully
before tackling Chapter 7.

0.1 Vector Calculus

René Descartes (1596-1650, French)
was born in La Haye en Touraine (now
Descartes), France. His mother died
when he was an infant. His father was
a member of parliament who encour-
aged Descartes to become a lawyer.
Descartes graduated with a degree
in law from the University of Poitiers
in 1616. In 1619, he had a series of
dreams that led him to believe that
he should instead pursue science.
Descartes became one of the great-
est mathematicians, physicists, and
philosophers of all time. He is credited
with inventing the Cartesian coordinate
system, which is named after him. For
the first time, geometric shapes could
be expressed as algebraic equations.
(Wikipedia)

Each position in space corresponds to a unique vector r ≡ xx̂+ y ŷ+ zẑ, where
x̂, ŷ, and ẑ are unit vectors with length one, pointing along their respective axes.
Boldface type distinguishes a variable as a vector quantity, and the use of x̂, ŷ,
and ẑ denotes a Cartesian coordinate system. Electric and magnetic fields are
vectors whose magnitude and direction can depend on position, as denoted by
E (r) or B (r). An example of such a field is E (r) = q (r− r0)

/
4πϵ0 |r− r0|3 , which

is the static electric field surrounding a point charge located at position r0. The
absolute-value brackets indicate the magnitude (or length) of the vector given by

|r− r0| =
∣∣(x −x0) x̂+ (

y − y0

)
ŷ+ (z − z0) ẑ

∣∣
=

√
(x −x0)2 + (

y − y0

)2 + (z − z0)2
(0.1)

1

https://en.wikipedia.org/wiki/Rene_Descartes


2 Chapter 0 Mathematical Tools

Example 0.1

Compute the electric field at r = (
2x̂+2ŷ+2ẑ

)
Å due to a positive point charge q

positioned at r0 =
(
1x̂+1ŷ+2ẑ

)
Å.

Figure 0.1 The electric field vec-
tors around a point charge.

Solution: As mentioned above, the field is given by E (r) = q (r− r0)
/

4πϵ0 |r− r0|3 .
We have

r− r0 =
(
(2−1)x̂+ (2−1)ŷ+ (2−2)ẑ

)
Å = (

1x̂+1ŷ
)

Å

and
|r− r0| =

√
(1)2 + (1)2 Å =p

2 Å

The electric field is then

E = q
(
1x̂+1ŷ

)
Å

4πϵ0

(p
2 Å

)3

In addition to position, the electric and magnetic fields almost always depend
on time in optics problems. For example, a common time-dependent field is
E(r, t ) = E0 cos(k·r−ωt ). The dot product k·r is an example of vector multiplication,
and signifies the following operation:

k · r = (
kx x̂+ky ŷ+kz ẑ

) · (xx̂+ y ŷ+ zẑ
)

= kx x +ky y +kz z

= |k||r|cosφ

(0.2)

where φ is the angle between the vectors k and r.

Proof of the final line of (0.2)

Consider the plane that contains the two vectors k and r. Call it the x ′y ′-plane. In
this coordinate system, the two vectors can be written as k = k cosθx̂′+k sinθŷ′ and
r = r cosαx̂′+r sinαŷ′, where θ andα are the respective angles that the two vectors
make with the x ′-axis. The dot product gives k · r = kr (cosθcosα+ sinθ sinα).
This simplifies to k · r = kr cosφ (see (0.13)), where φ≡ θ−α is the angle between
the vectors. Thus, the dot product between two vectors is the product of the
magnitudes of the vectors times the cosine of the angle between them.

Another type of vector multiplication is the cross product, which is accom-
plished in the following manner:1

E×B =
∣∣∣∣∣∣

x̂ ŷ ẑ
Ex Ey Ez

Bx By Bz

∣∣∣∣∣∣
= (

Ey Bz −Ez By
)

x̂− (Ex Bz −Ez Bx ) ŷ+ (
Ex By −Ey Bx

)
ẑ

(0.3)

1The use of the determinant to generate the cross product is merely a convenient device for
remembering its form.
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Note that the cross product results in a vector, whereas the dot product mentioned
above results in a scalar (i.e. a number with appropriate units). The resultant
cross-product vector is always perpendicular to the two vectors that are cross-
multiplied. If the fingers on your right hand curl from the first vector towards the
second, your thumb will point in the direction of the result. The magnitude of the
result equals the product of the magnitudes of the constituent vectors times the
sine of the angle between them.

Proof of cross-product properties

We label the plane containing E and B the x ′y ′-plane. In this coordinate system, the
two vectors can be written as E = E cosθx̂′+E sinθŷ′ and B = B cosαx̂′+B sinαŷ′,
where θ and α are the respective angles that the two vectors make with the x ′-axis.
The cross product, according to (0.3), gives E×B = EB(cosθ sinα− sinθcosα)ẑ′.
This simplifies to E×B = EB sinφẑ′ (see (0.14)), where φ ≡ α−θ is the angle be-
tween the vectors. The vectors E and B, which both lie in the x ′y ′-plane, are both
perpendicular to z ′. If 0 < θ−α < π, the result E×B points in the positive z ′
direction, which is consistent with the right-hand rule.

Figure 0.2 Right-hand rule for
cross product.

We will use several multidimensional derivatives in our study of optics, namely
the gradient, the divergence, and the curl.2 In Cartesian coordinates, the gradient
of a scalar function is given by

∇ f
(
x, y, z

)= ∂ f

∂x
x̂+ ∂ f

∂y
ŷ+ ∂ f

∂z
ẑ (0.4)

the divergence, which applies to vector functions, is given by

∇·E = ∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
(0.5)

and the curl, which also applies to vector functions, is given by

∇×E =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

Ex Ey Ez

∣∣∣∣∣∣
=

(
∂Ez

∂y
− ∂Ey

∂z

)
x̂−

(
∂Ez

∂x
− ∂Ex

∂z

)
ŷ+

(
∂Ey

∂x
− ∂Ex

∂y

)
ẑ

(0.6)

Example 0.2

Derive the gradient (0.4) in cylindrical coordinates defined by the transformations
x = ρ cosφ and y = ρ sinφ. (The coordinate z remains unchanged.)

2See M. R. Spiegel, Schaum’s Outline of Advanced Mathematics for Engineers and Scientists, pp.
126-127 (New York: McGraw-Hill 1971).
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Solution: By inspection of Fig. 0.3, the Cartesian unit vectors may be expressed as

x̂ = cosφρ̂− sinφφ̂ and ŷ = sinφρ̂+cosφφ̂

In accordance with the rules of calculus, the needed partial derivatives expressed
in terms of the new variables are

∂

∂x
=

(
∂ρ

∂x

)
∂

∂ρ
+

(
∂φ

∂x

)
∂

∂φ
and

∂

∂y
=

(
∂ρ

∂y

)
∂

∂ρ
+

(
∂φ

∂y

)
∂

∂φ

Figure 0.3 The unit vectors x̂ and ŷ
may be expressed in terms of com-
ponents along φ̂ and ρ̂ in cylindri-
cal coordinates.

Meanwhile, the inverted form of the coordinate transformation is

ρ =
√

x2 + y2 and φ= tan−1 y/x

from which we obtain the following derivatives:

∂ρ

∂x
= x√

x2 + y2
= cosφ

∂φ

∂x
=− y

x2 + y2 =−sinφ

ρ

∂ρ

∂y
= y√

x2 + y2
= sinφ

∂φ

∂y
= x

x2 + y2 = cosφ

ρ

Putting this all together, we arrive at

∇ f = ∂ f

∂x
x̂+ ∂ f

∂y
ŷ+ ∂ f

∂z
ẑ

=
(
cosφ

∂ f

∂ρ
− sinφ

ρ

∂ f

∂φ

)(
cosφρ̂− sinφφ̂

)
+

(
sinφ

∂ f

∂ρ
+ cosφ

ρ

∂ f

∂φ

)(
sinφρ̂+cosφφ̂

)+ ∂ f

∂z
ẑ

= ∂ f

∂ρ
ρ̂+ 1

ρ

∂ f

∂φ
φ̂+ ∂ f

∂z
ẑ

where we have used cos2φ+ sin2φ= 1 (see Ex. 0.4).

Pierre-Simon Laplace (1749-1827,
French) was born in Normandy, France
to a farm laborer. Some wealthy neigh-
bors noticed his unusual abilities
and took an interest in his education.
Laplace is sometimes revered as the
“Newton” of France with contributions
to mathematics and astronomy. The
Laplacian differential operator as well as
Laplace transforms are used widely in
applied mathematics. (Wikipedia)

We will sometimes need a multidimensional second derivative called the
Laplacian. When applied to a scalar function, it is defined as the divergence of a
gradient:

∇2 f
(
x, y, z

)≡∇· [∇ f
(
x, y, z

)]
(0.7)

In Cartesian coordinates, this reduces to

∇2 f
(
x, y, z

)= ∂2 f

∂x2 + ∂2 f

∂y2 + ∂2 f

∂z2 (0.8)

The Laplacian applied to a scalar gives a result that is also a scalar. In Cartesian
coordinates, we deal with vector functions by applying the Laplacian to the scalar
function attached to each unit vector:

∇2E =
(
∂2Ex

∂x2 + ∂2Ex

∂y2 + ∂2Ex

∂z2

)
x̂+

(
∂2Ey

∂x2 + ∂2Ey

∂y2 + ∂2Ey

∂z2

)
ŷ+

(
∂2Ez

∂x2 + ∂2Ez

∂y2 + ∂2Ez

∂z2

)
ẑ

(0.9)

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
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This is possible because each unit vector is a constant in Cartesian coordinates.
The various multidimensional derivatives take on more complicated forms in

non-Cartesian coordinates such as cylindrical or spherical. You can derive the
Laplacian for these other coordinate systems by changing variables and rewriting
the unit vectors starting from the above Cartesian expression. (See Problem 0.10.)
Regardless of the coordinate system, the Laplacian for a vector function can be
obtained from first derivatives though

∇2E ≡∇(∇·E)−∇× (∇×E) (0.10)

Verification of (0.10) in Cartesian coordinates

From (0.6), we have

∇×E =
(
∂Ez

∂y
− ∂Ey

∂z

)
x̂−

(
∂Ez

∂x
− ∂Ex

∂z

)
ŷ+

(
∂Ey

∂x
− ∂Ex

∂y

)
ẑ

and

∇× (∇×E) =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z(
∂Ez
∂y − ∂Ey

∂z

)
−

(
∂Ez
∂x − ∂Ex

∂z

) (
∂Ey
∂x − ∂Ex

∂y

)
∣∣∣∣∣∣∣

=
[
∂

∂y

(
∂Ey

∂x
− ∂Ex

∂y

)
+ ∂

∂z

(
∂Ez

∂x
− ∂Ex

∂z

)]
x̂−

[
∂

∂x

(
∂Ey

∂x
− ∂Ex

∂y

)
− ∂

∂z

(
∂Ez

∂y
− ∂Ey

∂z

)]
ŷ

+
[
− ∂

∂x

(
∂Ez

∂x
− ∂Ex

∂z

)
− ∂

∂y

(
∂Ez

∂y
− ∂Ey

∂z

)]
ẑ

After adding and subtracting ∂2Ex

∂x2 x̂+ ∂2Ey

∂y2 ŷ+ ∂2Ez

∂z2 ẑ and then rearranging, we
get

∇× (∇×E) =
[
∂2Ex

∂x2
+ ∂2Ey

∂x∂y
+ ∂2Ez

∂x∂z

]
x̂+

[
∂2Ex

∂x∂y
+ ∂2Ey

∂y2
+ ∂2Ez

∂y∂z

]
ŷ+

[
∂2Ex

∂x∂z
+ ∂2Ey

∂y∂z
+ ∂2Ez

∂z2

]
ẑ

−
[
∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2

]
x̂−

[
∂2Ey

∂x2
+ ∂2Ey

∂y2
+ ∂2Ey

∂z2

]
ŷ−

[
∂2Ez

∂x2
+ ∂2Ez

∂y2
+ ∂2Ez

∂z2

]
ẑ

After some factorization, we obtain

∇× (∇×E) =
[

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

][
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z

]
−

[
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

][
Ex x̂+Ey ŷ+Ez ẑ

]
=∇ (∇·E)−∇2E

where on the final line we invoked (0.4), (0.5), and (0.8).

We will also encounter several integral theorems3 involving vector functions.
The divergence theorem for a vector function F is∮

S

F · n̂ d a =
∫
V

∇·F d v (0.11)

3For succinct treatments of the divergence theorem and Stokes’ theorem, see M. R. Spiegel,
Schaum’s Outline of Advanced Mathematics for Engineers and Scientists, p. 154 (New York: McGraw-
Hill 1971).
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The integration on the left-hand side is over the closed surface S, which contains
the volume V associated with the integration on the right-hand side. The unit
vector n̂ points outward, normal to the surface. The divergence theorem is espe-
cially useful in connection with Gauss’ law, where the left-hand side is interpreted
as the number of field lines exiting a closed surface.

Example 0.3

Check the divergence theorem (0.11) for the vector function F
(
x, y, z

) = y2 x̂+
x y ŷ+x2z ẑ. Take as the volume a cube contained by the six planes x =±1, y =±1,
and z =±1.

Figure 0.4 The function F (red
arrows) plotted for several points
on the surface S.

Solution: First, we evaluate the left side of (0.11) for the function:

∮
S

F · n̂d a =
1∫

−1

1∫
−1

d xd y
(
x2z

)
z=1 −

1∫
−1

1∫
−1

d xd y
(
x2z

)
z=−1 +

1∫
−1

1∫
−1

d xd z
(
x y

)
y=1

−
1∫

−1

1∫
−1

d xd z
(
x y

)
y=−1 +

1∫
−1

1∫
−1

d yd z
(
y2)

x=1 −
1∫

−1

1∫
−1

d yd z
(
y2)

x=−1

= 2

1∫
−1

1∫
−1

d xd y x2 +2

1∫
−1

1∫
−1

d xd zx = 4
x3

3

∣∣∣∣1

−1
+4

x2

2

∣∣∣∣1

−1
= 8

3

Now we evaluate the right side of (0.11):

∫
V

∇·Fd v =
1∫

−1

1∫
−1

1∫
−1

d xd yd z
[
x +x2]= 4

1∫
−1

d x
[
x +x2]= 4

[
x2

2
+ x3

3

]1

−1
= 8

3

Another important theorem is Stokes’ theorem:∫
S

(∇×F) · n̂ d a =
∮
C

F ·dℓ (0.12)

The integration on the left-hand side is over an open surface S (not enclosing a
volume). The integration on the right-hand side is around the edge of the surface.
Again, n̂ is a unit vector that always points normal to the surface. The vector dℓ
points along the curve C that bounds the surface S. If the fingers of your right
hand point in the direction of integration around C , then your thumb points
in the direction of n̂. Stokes’ theorem is especially useful in connection with
Ampere’s law and Faraday’s law. The right-hand side is an integration of a field
around a loop.

0.2 Complex Numbers

It is often convenient to represent electromagnetic wave phenomena (i.e. light) as
a superposition of sinusoidal functions, each having the form A cos

(
α+β)

. The
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sine function is intrinsically present in this formula via the identity

cos
(
α+β)= cosαcosβ− sinαsinβ (0.13)

This is a good formula to commit to memory, as well as the frequently used
identity

sin
(
α+β)= sinαcosβ+ sinβcosα (0.14)

With a basic familiarity with trigonometry, we can approach many optical
problems including those involving the addition of multiple waves. However, the
manipulation of trigonometric functions via identities such as (0.13) and (0.14)
can be cumbersome and tedious. Fortunately, complex-number notation offers
an equivalent approach with far less busy work. The modest investment needed to
become comfortable with complex notation is definitely worth it; optics problems
can become cumbersome enough even with the most efficient methods!

Leonhard Euler (1707-1783, Swiss)
was born in Basel, Switzerland. His fa-
ther, Paul Euler, was friends with the
well-known mathematician Johann
Bernoulli, who discovered young Eu-
ler’s great talent for mathematics and
tutored him regularly. Euler enrolled at
the University of Basel at age thirteen.
In 1726 Euler accepted an offer to join
the Russian Academy of Sciences in
St Petersburg, having unsuccessfully
applied for a professorship at the Uni-
versity of Basel. Under the auspices of
the Czars (with the exception of 12-year-
old Peter II), foreign academicians in
the Russian Academy were given con-
siderable freedom to pursue scientific
questions with relatively light teaching
duties. Euler spent his early career in
Russia, his mid career in Berlin, and
his later career again in Russia. Euler
introduced the concept of a function.
He successfully defined logarithms and
exponential functions for complex num-
bers and discovered the connection to
trigonometric functions. The special
case of Euler’s formula eiπ +1 = 0 has
been voted by modern fans of mathe-
matics (including Richard Feynman) as
“the Most Beautiful Mathematical For-
mula Ever” for its single uses of addition,
multiplication, exponentiation, equality,
and the constants 0, 1, e, i and π. Euler
and his wife, Katharina Gsell, were the
parents of 13 children, many of whom
died in childhood. (Wikipedia)

The convenience of complex-number notation has its origins in Euler’s for-
mula:

e iφ = cosφ+ i sinφ (0.15)

where the imaginary number i is defined by i 2 =−1. By inverting Euler’s formula
(0.15) (and its twin with φ→−φ) we can obtain the following representation of
the cosine and sine functions:

cosφ= e iφ+e−iφ

2
,

sinφ= e iφ−e−iφ

2i

(0.16)

Equation (0.16) shows how ordinary sines and cosines are intimately related to
hyperbolic cosines and hyperbolic sines. If φ happens to be imaginary such that
φ= iγ where γ is real, then we have

sin iγ= e−γ−eγ

2i
= i sinhγ

cos iγ= e−γ+eγ

2
= coshγ

(0.17)

Proof of Euler’s formula

We can prove Euler’s formula using a Taylor’s series expansion:

f (x) = f (x0)+ 1

1!
(x −x0)

d f

d x

∣∣∣∣
x=x0

+ 1

2!
(x −x0)2 d 2 f

d x2

∣∣∣∣
x=x0

+·· · (0.18)

By expanding each function appearing in (0.15) in a Taylor’s series about the origin
we obtain

cosφ= 1− φ2

2!
+ φ4

4!
−·· ·

i sinφ= iφ− i
φ3

3!
+ i

φ5

5!
−·· ·

e iφ = 1+ iφ− φ2

2!
− i

φ3

3!
+ φ4

4!
+ i

φ5

5!
−·· ·

(0.19)

https://en.wikipedia.org/wiki/Leonhard_Euler
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The last line of (0.19) is seen to be the sum of the first two lines, from which Euler’s
formula directly follows.

Brook Taylor (1685-1731, English) was
born in Middlesex, England. He studied
at Cambridge as a fellow-commoner
earning a bachelor degree in 1709
and a doctoral degree in 1714. Soon
thereafter, he developed the branch
of mathematics known as calculus of
finite differences. He used it to study
the movement of vibrating strings. As
part of that work, he developed the for-
mula known today as Taylor’s theorem,
which was under-appreciated until 1772,
when French mathematician Lagrange
referred to it as “the main foundation of
differential calculus.” (Wikipedia)

Example 0.4

Prove (0.13) and (0.14) as well as cos2φ+ sin2φ= 1 by taking advantage of (0.16).

Solution: We start with Euler’s formula (0.15) for a sum of angles:

cos(α+β)+ i sin(α+β) = e i (α+β)

= e iαe iβ

= (cosα+ i sinα)(cosβ+ i sinβ)

= (cosαcosβ− sinαsinβ)+ i (sinαcosβ+cosαsinβ)

Equating the real parts gives (0.13), and equating the imaginary parts gives (0.14).
In the case of β=−α, we have 1 = cos2α+ sin2α.

Or,

We start with (0.13). By direct application of (0.16) and some rearranging, we have

cosαcosβ− sinαsinβ= e iα+e−iα

2

e iβ+e−iβ

2
− e iα−e−iα

2i

e iβ−e−iβ

2i

= e i(α+β) +e i(α−β) +e−i(α−β) +e−i(α+β)

4

+ e i(α+β) −e i(α−β) −e−i(α−β) +e−i(α+β)

4

= e i(α+β) +e−i(α+β)

2
= cos

(
α+β)

We can prove (0.14) using the same technique:

sinαcosβ+ sinβcosα= e iα−e−iα

2i

e iβ+e−iβ

2
+ e iβ−e−iβ

2i

e iα+e−iα

2

= e i(α+β) +e i(α−β) −e−i(α−β) −e−i(α+β)

4i

+ e i(α+β) −e i(α−β) +e−i(α−β) −e−i(α+β)

4i

= e i(α+β) −e−i(α+β)

2i
= sin

(
α+β)

Finally, we compute

cos2φ+ sin2φ=
(

e iφ+e−iφ

2

)2

+
(

e iφ−e−iφ

2i

)2

= e2iφ+2+e−2iφ

4
− e2iφ−2+e−2iφ

4
= 1

https://en.wikipedia.org/wiki/Brook_Taylor


0.2 Complex Numbers 9

As was mentioned previously, we will often be interested in waves of the form
A cos

(
α+β)

. We can use complex notation to represent this wave simply by
writing

A cos
(
α+β)= Re

{
Ãe iα

}
(0.20)

where the ‘phase’ β is conveniently contained within the complex factor Ã ≡ Ae iβ.
The operation Re{ } means to retain only the real part of the argument without
regard for the imaginary part. As an example, we have Re{1+2i } = 1. The formula
(0.20) follows directly from Euler’s equation (0.15).

It is common (even conventional) to omit the explicit writing of Re{ }. Thus,
physicists participate in a conspiracy that Ãe iα actually means A cos

(
α+β)

. This
laziness is permissible because it is possible to perform linear operations on
Re

{
f
}

such as addition, differentiation, or integration while procrastinating the
taking of the real part until the end:

Re
{

f
}+Re

{
g
}= Re

{
f + g

}
d

d x
Re

{
f
}= Re

{
d f

d x

}
∫

Re
{

f
}

d x = Re

{∫
f d x

} (0.21)

Gerolamo Cardano (1501-1576, Ital-
ian) was the first to introduce the notion
of complex numbers (which he called
“fictitious”) while developing solutions
to cubic and quartic equations. He was
born in Pavia, Italy, the illegitimate son
of a lawyer who was an acquaintance
of Leonardo da Vinci. Cardano was for-
tunate to survive infancy as his father
claimed that his mother attempted to
abort him and his older siblings all died
of the plague. Cardano studied at the
University of Pavia and later at Padua.
He was known for being eccentric and
confrontational, which did not earn him
many friends. He supported himself in
part as a somewhat successful gam-
bler, but he was often short of money.
Cardano also introduced binomial co-
efficients and the binomial theorem.
(Wikipedia)

As an example, note that Re{1+2i }+Re{3+4i } = Re{(1+2i )+ (3+4i )} = 4.
However, we must be careful when performing other operations such as multi-
plication. In this case, it is essential to take the real parts before performing the
operation. Notice that

Re
{

f
}×Re

{
g
} ̸= Re

{
f × g

}
(0.22)

As an example, we see Re{1+2i }×Re{3+4i } = 3, but Re{(1+2i ) (3+4i )} =−5.
When dealing with complex numbers it is often advantageous to transform

between a Cartesian representation and a polar representation. With the aid of
Euler’s formula, it is possible to transform any complex number a + i b into the
form ρe iφ, where a, b, ρ, and φ are real. From (0.15), the required connection
between

(
ρ,φ

)
and (a,b) is

ρe iφ = ρ cosφ+ iρ sinφ= a + i b (0.23)

The real and imaginary parts of this equation must separately be equal. Thus, we
have

a = ρ cosφ

b = ρ sinφ
(0.24)

These equations can be inverted to yield

ρ =
√

a2 +b2

φ= tan−1 b

a
(a > 0)

(0.25)

https://en.wikipedia.org/wiki/Gerolamo_Cardano
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When a < 0, we must adjust φ by π since the arctangent has a range only from
−π/2 to π/2.

II

III IV

Quadrant I

Figure 0.5 A number in the com-
plex plane can be represented
either by Cartesian or polar repre-
sentation.

The transformations in (0.24) and (0.25) have a clear geometrical interpreta-
tion in the complex plane, and this makes it easier to remember them. They are
just the usual connections between Cartesian and polar coordinates. As seen in
Fig. 0.5, ρ is the hypotenuse of a right triangle having legs with lengths a and b,
and φ is the angle that the hypotenuse makes with the x-axis. Again, you should
be careful when a is negative since the arctangent is defined in quadrants I and
IV. An easy way to deal with the situation of a negative a is to factor the minus
sign out before proceeding (i.e. a + i b =− (−a − i b) ). Then the transformation
is made on −a − i b where −a is positive. The overall minus sign out in front is
just carried along unaffected and can be factored back in at the end. Notice that
−ρe iφ is the same as ρe i(φ±π).

Example 0.5

Write −3+4i in polar format.

Figure 0.6 Geometric representa-
tion of −3+4i

Solution: We must be careful with the negative real part since it indicates a quad-
rant (in this case II) outside of the domain of the inverse tangent (quadrants I and
IV). Best to factor the negative out and deal with it separately.

−3+4i =−(3−4i ) =−
√

32 + (−4)2e i tan−1 (−4)
3 = e iπ5e−i tan−1 4

3 = 5e i (π−tan−1 4
3 )

Finally, we consider the concept of a complex conjugate. The conjugate of a
complex number z = a + i b is denoted with an asterisk and amounts to changing
the sign on the imaginary part of the number:

z∗ = (a + i b)∗ ≡ a − i b (0.26)

The complex conjugate is useful when computing the absolute value of a complex
number:

|z| =
p

z∗z =
√

(a − i b) (a + i b) =
√

a2 +b2 = ρ (0.27)

Note that the absolute value of a complex number is the same as its magnitude ρ
as defined in (0.25). The complex conjugate is also useful for eliminating complex
numbers from the denominator of expressions:

a + i b

c + i d
= (a + i b)

(c + i d)

(c − i d)

(c − i d)
= ac +bd + i (bc −ad)

c2 +d 2 (0.28)

No matter how complicated an expression, the complex conjugate is calcu-
lated by inserting a minus sign in front of all occurrences of i in the expression,
and placing an asterisk on all complex variables in the expression. For example,
the complex conjugate of ρe iφ is ρe−iφ assuming ρ and φ are real, as can be seen
from Euler’s formula (0.15). As another example consider[

E0 exp{i (kz −ωt )}
]∗ = E∗

0 exp
{−i

(
k∗z −ωt

)}
(0.29)
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assuming z, ω, and t are real, but E0 and k are complex.
A common way of obtaining the real part of an expression is by adding the

complex conjugate and dividing the result by 2:

Re{z} = 1

2

(
z + z∗)

(0.30)

Notice that the expression for cosφ in (0.16) is an example of this formula. Some-
times when a lengthy expression is added to its own complex conjugate, we let
“C.C.” represent the complex conjugate in order to avoid writing the expression
twice.

In optics we sometimes encounter a complex angle, such as kz in (0.29). The
imaginary part of k governs exponential decay (or growth) when a light wave
propagates in an absorptive (or amplifying) medium. Similarly, when we compute
the transmission angle for light incident upon a surface beyond the critical angle
for total internal reflection, we encounter the arcsine of a number greater than
one in an effort to satisfy Snell’s law. Even though such an angle does not exist in
the physical sense, a complex value for the angle can be found, which satisfies
(0.16) and describes evanescent waves.

0.3 Linear Algebra

Throughout this book we will often encounter sets of linear equations. (They
are called linear equations because they represent lines in a plane or in space.)
Most often, there are just two equations with two variables to solve. The simplest
example of such a set of equations is

Ax +B y = F and C x +D y =G (0.31)

where x and y are variables. A set of linear equations such as (0.31) can be
expressed using matrix notation as[

A B
C D

][
x
y

]
=

[
Ax +B y
C x +D y

]
=

[
F
G

]
(0.32)

As seen above, the 2× 2 matrix multiplied onto the two-dimensional column
vector results in a two-dimensional vector. The elements of rows are multiplied
onto elements of the column and summed to create each new element in the
result. A matrix can also be multiplied onto another matrix (rows multiplying
columns, resulting in a matrix). The order of multiplication is important; matrix
multiplication is not commutative.

To solve a matrix equation such as (0.32), we multiply both sides by an inverse
matrix, which gives[

A B
C D

]−1 [
A B
C D

][
x
y

]
=

[
A B
C D

]−1 [
F
G

]
(0.33)
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The inverse matrix has the property that[
A B
C D

]−1 [
A B
C D

]
=

[
1 0
0 1

]
(0.34)

where the right-hand side is called the identity matrix. You can easily check that
the identity matrix leaves unchanged anything that it multiplies, and so (0.33)
simplifies to [

x
y

]
=

[
A B
C D

]−1 [
F
G

]
Once the inverse matrix is found, the matrix multiplication on the right can be
performed and the answers for x and y obtained as the upper and lower elements
of the result.

The inverse of a 2×2 matrix is given by[
A B
C D

]−1

= 1∣∣∣∣ A B
C D

∣∣∣∣
[

D −B
−C A

]
(0.35)

where ∣∣∣∣ A B
C D

∣∣∣∣≡ AD −C B

is called the determinant. We can check that (0.35) is correct by direct substitution:[
A B
C D

]−1 [
A B
C D

]
= 1

AD −BC

[
D −B
−C A

][
A B
C D

]
= 1

AD −BC

[
AD −BC 0

0 AD −BC

]
=

[
1 0
0 1

] (0.36)

James Joseph Sylvester (1814-1897,
English) made fundamental contribu-
tions to matrix theory, invariant theory,
number theory, partition theory and com-
binatorics. He played a leadership role
in American mathematics in the later
half of the 19th century as a professor
at the Johns Hopkins University and
as founder of the American Journal of
Mathematics. (Wikipedia)

The above review of linear algebra is very basic. In contrast, we next dis-
cuss Sylvester’s theorem, which you probably have not previously encountered.
Sylvester’s theorem is useful when multiplying the same 2×2 matrix (with a de-
terminate of unity) together many times (i.e. raising the matrix to a power). This
situation occurs when modeling periodic multilayer mirror coatings or when
considering light rays trapped in a laser cavity as they reflect many times.

Sylvester’s Theorem:4 If the determinant of a 2×2 matrix is one, (i.e. AD−BC = 1)
then[

A B
C D

]N

= 1

sinθ

[
A sin Nθ− sin(N −1)θ B sin Nθ

C sin Nθ D sin Nθ− sin(N −1)θ

]
(0.37)

4The theorem presented here is a specific case. See A. A. Tovar and L. W. Casperson, “Generalized
Sylvester theorems for periodic applications in matrix optics,” J. Opt. Soc. Am. A 12, 578-590 (1995).

https://en.wikipedia.org/wiki/James_Joseph_Sylvester
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where

cosθ = 1

2
(A+D) (0.38)

Proof of Sylvester’s theorem by induction

When N = 1, the equation is seen to be correct by direct substitution. Next we
assume that the theorem holds for arbitrary N , and we check to see if it holds for
N +1:

[
A B
C D

]N+1

= 1

sinθ

[
A B
C D

][
A sin Nθ− sin(N −1)θ B sin Nθ

C sin Nθ D sin Nθ− sin(N −1)θ

]

= 1

sinθ

[ (
A2 +BC

)
sin Nθ− A sin(N −1)θ (AB +BD)sin Nθ−B sin(N −1)θ

(AC +C D)sin Nθ−C sin(N −1)θ
(
D2 +BC

)
sin Nθ−D sin(N −1)θ

]
Now we inject the condition AD −BC = 1 into the diagonal elements and obtain

1

sinθ

[ (
A2 + AD −1

)
sin Nθ− A sin(N −1)θ B [(A+D)sin Nθ− sin(N −1)θ]

C [(A+D)sin Nθ− sin(N −1)θ]
(
D2 + AD −1

)
sin Nθ−D sin(N −1)θ

]

and then

1

sinθ

[
A [(A+D)sin Nθ− sin(N −1)θ]− sin Nθ B [(A+D)sin Nθ− sin(N −1)θ]

C [(A+D)sin Nθ− sin(N −1)θ] D [(A+D)sin Nθ− sin(N −1)θ]− sin Nθ

]

In each matrix element, the expression

(A+D)sin Nθ = 2cosθ sin Nθ = sin(N +1)θ+ sin(N −1)θ (0.39)

occurs, which we have rearranged using cosθ = 1
2 (A+D) while twice invoking

(0.14). The result is[
A B
C D

]N+1

= 1

sinθ

[
A sin(N +1)θ− sin Nθ B sin(N +1)θ

C sin(N +1)θ D sin(N +1)θ− sin Nθ

]
which completes the proof.

0.4 Fourier Theory

In the study of optics, it is common to decompose complicated light fields into
superpositions of pure sinusoidal waves. This is called Fourier analysis.5 This is
important since individual sine waves tend to move differently through optical
systems (say, a piece of glass with frequency-dependent index). After propagation
through a system, we can also reassemble sinusoidal waves to see the effect on the

5See Murray R. Spiegel, Schaum’s Outline of Advanced Mathematics for Engineers and Scientists,
Chaps. 7-8 (New York: McGraw-Hill 1971).



14 Chapter 0 Mathematical Tools

overall waveform. In fact, it will be possible to work simultaneously with infinitely
many sinusoidal waves, where the frequencies comprising a light field are spread
continuously over a range. Fourier transforms are also helpful for diffraction
problems where many waves (all with the same frequency) interfere spatially.

We begin with a derivation of the Fourier integral theorem. As asserted by
Fourier, a periodic function can be represented in terms of sines and cosines in
the following manner:

f (t ) =
∞∑

n=0
an cos(n∆ωt )+bn sin(n∆ωt ) (0.40)

This is called a Fourier expansion. It is similar in idea to a Taylor’s series (0.18),
which rewrites a function as a polynomial. In both cases, the goal is to represent
one function in terms of a linear combination of other functions (requiring a
complete basis set). In a Taylor’s series the basis functions are polynomials and
in a Fourier expansion the basis functions are sines and cosines with various
frequencies (multiples of a fundamental frequency).

Joseph Fourier (1768-1830, French)
was born to a tailor in Auxerre, France.
He was orphaned at age eight. Because
of his humble background, which closed
some doors to his education and career,
he became a prominent supporter of the
French Revolution. He was rewarded by
an appointment to a position in the École
Polytechnique. In 1798, participated
in Napoleon’s expedition to Egypt and
served as governor over lower Egypt
for a time. Fourier made significant
contributions to the study of heat transfer
and vibrations (presented in 1822), and
it was in this context that he asserted
that functions could be represented as a
series of sine waves. (Wikipedia)

By inspection, we see that all terms in (0.40) repeat with a maximum period
of 2π/∆ω. In other words, a Fourier series is good for functions where f (t) =
f (t +2π/∆ω). The expansion (0.40) is useful even if f (t ) is complex, requiring an

and bn to be complex.
Using (0.16), we can rewrite the sines and cosines in the expansion (0.40) as

f (t ) =
∞∑

n=0
an

e i n∆ωt +e−i n∆ωt

2
+bn

e i n∆ωt −e−i n∆ωt

2i

= a0 +
∞∑

n=1

an − i bn

2
e i n∆ωt +

∞∑
n=1

an + i bn

2
e−i n∆ωt

(0.41)

or more simply as

f (t ) =
∞∑

n=−∞
cne−i n∆ωt (0.42)

where

cn<0 ≡ a−n − i b−n

2

cn>0 ≡ an + i bn

2
c0 ≡ a0

(0.43)

Notice that if c−n = c∗n for all n, then f (t) is real (i.e. real an and bn); otherwise
f (t ) is complex. The real parts of the cn coefficients are connected with the cosine
terms in (0.40), and the imaginary parts of the cn coefficients are connected with
the sine terms in (0.40).

Given a known function f (t), we can compute the various coefficients cn .
There is a trick for figuring out how to do this. We multiply both sides of (0.42) by

https://en.wikipedia.org/wiki/Joseph_Fourier
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e i m∆ωt , where m is an integer, and integrate over the function period 2π/∆ω:

π/∆ω∫
−π/∆ω

f (t )e i m∆ωt d t =
∞∑

n=−∞
cn

π/∆ω∫
−π/∆ω

e i (m−n)∆ωt d t

=
∞∑

n=−∞
cn

[
e i (m−n)∆ωt

i (m −n)∆ω

]π/∆ω

−π/∆ω

=
∞∑

n=−∞
2πcn

∆ω

[
e i (m−n)π−e−i (m−n)π

2i (m −n)π

]
=

∞∑
n=−∞

2πcn

∆ω

sin[(m −n)π]

(m −n)π

(0.44)

The function sin[(m −n)π]/[(m −n)π] is equal to zero for all n ̸= m, and it is
equal to one when n = m (to see this, use L’Hospital’s rule on the zero-over-zero
situation, or just go back and reperform the above integral for n = m). Thus, only
one term contributes to the summation in (0.44). We now have

cm = ∆ω

2π

π/∆ω∫
−π/∆ω

f (t )e i m∆ωt d t (0.45)

from which the coefficients cn can be computed, given a function f (t ). (Note that
m is a dummy index so we can change it back to n if we like.)

This completes the circle. If we know the function f (t), we can find the
coefficients cn via (0.45), and, if we know the coefficients cn , we can generate the
function f (t ) via (0.42). If we are feeling a bit silly, we might combine these into a
single identity:

f (t ) =
∞∑

n=−∞

∆ω
2π

π/∆ω∫
−π/∆ω

f (t ′)e i n∆ωt ′d t ′
e−i n∆ωt (0.46)

We start with a function f (t) followed by a lot of computation and obtain the
function back again! (This is not quite as foolish as it first appears, as we will
discuss later.)

As mentioned above, Fourier expansions represent functions f (t) that are
periodic over the interval 2π/∆ω. This is disappointing since many optical wave-
forms do not repeat (e.g. a single short laser pulse). Nevertheless, we can represent
a function f (t ) that is not periodic if we let the period 2π/∆ω become infinitely
long. In other words, we can accommodate nonperiodic functions if we take the
limit as ∆ω goes to zero so that the spacing of terms in the series becomes very
fine. Applying this limit to (0.46) we obtain

f (t ) = 1

2π
lim
∆ω→0

∞∑
n=−∞

e−i n∆ωt

∞∫
−∞

f
(
t ′

)
e i n∆ωt ′d t ′

∆ω (0.47)
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At this point, a brief review of the definition of an integral is helpful to better
understand the next step that we shall administer to (0.47).

Changing the summation in (0.47) over to an integral

Recall that an integral is really a summation of rectangles under a curve with finely
spaced steps:

b∫
a

g (ω)dω≡ lim
∆ω→0

b−a
∆ω∑

n=0
g (a +n∆ω)∆ω

= lim
∆ω→0

b−a
2∆ω∑

n=− b−a
2∆ω

g

(
a +b

2
+n∆ω

)
∆ω

(0.48)

The final expression has been manipulated so that the index ranges through both
negative and positive numbers. If we set a =−b and take the limit b →∞, then the
above expression becomes

∞∫
−∞

g (ω) dω= lim
∆ω→0

∞∑
n=−∞

g (n∆ω)∆ω (0.49)

This concludes our short review of calculus.

Now, (0.47) has the same form as (0.49) if g (n∆ω) represents everything in
the square brackets of (0.47). The result is the Fourier integral theorem:

f (t ) = 1p
2π

∞∫
−∞

e−iωt

 1p
2π

∞∫
−∞

f
(
t ′

)
e iωt ′d t ′

dω (0.50)

The piece in brackets is called the Fourier transform, and the rest of the operation
is called the inverse Fourier transform. The Fourier integral theorem (0.50) is often
written with the following (potentially confusing) notation:

f (ω) ≡ 1p
2π

∞∫
−∞

f (t )e iωt d t

f (t ) ≡ 1p
2π

∞∫
−∞

f (ω)e−iωt dω

(0.51)

The transform and inverse transform are also sometimes written as f (ω) ≡
F

{
f (t )

}
and f (t) ≡ F−1

{
f (ω)

}
. Note that the functions f (t) and f (ω) are en-

tirely different, even taking on different units (i.e. the latter having extra units of
per frequency). The two functions are distinguished by their arguments, which
also have different units (e.g. time vs. frequency). Nevertheless, it is customary to
use the same letter to denote either function since they form a transform pair.



0.4 Fourier Theory 17

You should be aware that it is arbitrary which of the expressions in (0.51) is
called the transform and which is called the inverse transform. In other words, the
signs in the exponents of (0.51) may be interchanged (and this convention varies
in published works!). Also, the factor 2π may be placed on either the transform or
the inverse transform, or divided equally between the two as has been done here.

Example 0.6

Compute the Fourier transform of E(t ) = E0e−t 2/2T 2
e−iω0t followed by the inverse

Fourier transform.

Solution: According to (0.51), the Fourier transform is

E (ω) = 1p
2π

∞∫
−∞

(
E0e−t 2/2T 2

e−iω0t
)

e iωt d t = E0p
2π

∞∫
−∞

e−t 2/2T 2+i (ω−ω0)t d t

The integration can be performed with the help of (0.55), which yields

E (ω) = E0p
2π

√
π

1/2T 2 e
− (ω−ω0)2

4(1/2T 2) = T E0e−T 2(ω−ω0)2/2

Similarly, the inverse Fourier transform of the above function is

E (t ) = 1p
2π

∞∫
−∞

(
T E0e−T 2(ω−ω0)2/2

)
e−iωt dω= T E0p

2π

∞∫
−∞

e−
T 2
2 ω2+(T 2ω0−i t )ω− T 2

2 ω2
0 dω

where again we use (0.55) to obtain

E (t ) = T E0p
2π

√
π

T 2/2
e

(T 2ω0−i t)2

4(T 2/2) − T 2
2 ω2

0 = E0e−t 2/2T 2−iω0t

which brings us back to where we started.

As was previously mentioned, it would seem rather pointless to perform
a Fourier transform on the function f (t) followed by an inverse Fourier trans-
form, just to end up with f (t ) again. Instead, we will typically apply a frequency-
dependent effect on f (ω) before performing the inverse Fourier transform. In
this case, the final function will be different from f (t ). Keep in mind that f (ω) is
the continuous analog of the discrete coefficients cn (or the an and bn). The real
part of f (ω) indicates the amplitudes of the cosine waves necessary to construct
the function f (t ). The imaginary part of f (ω) indicates the amplitudes of the sine
waves necessary to construct the function f (t ).

Finally, we comment on the Dirac delta function, 6 which is defined indirectly
through

f (t ) =
∞∫

−∞
f
(
t ′

)
δ

(
t ′− t

)
d t ′ (0.52)

6See G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists 6th ed., Sect. 1.15 (San
Diego: Elsevier Academic Press 2005).
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The delta function δ
(
t ′− t

)
is zero everywhere except at t ′ = t where it is infinite

in such a way as to make the integral take on the value of the function f (t ). (You
can think of δ

(
t ′− t

)
d t ′ as an infinitely tall and infinitely thin rectangle centered

at t ′ = t with an area unity.) The integral only pays attention to the value of f
(
t ′

)
at the point t ′ = t .

A remarkable attribute of the delta function can be seen from the Fourier
integral theorem. After rearranging the order of integration, the Fourier integral
theorem (0.50) can be written as

f (t ) =
∞∫

−∞
f
(
t ′

) 1

2π

∞∫
−∞

e iω(t ′−t)dω

d t ′ (0.53)

A comparison between (0.52) and (0.53) shows that you may write the delta
function as a uniform superposition of all frequency components:

δ
(
t ′− t

)= 1

2π

∞∫
−∞

e iω(t ′−t) dω (0.54)

Example 0.7

Use (0.54) to prove Parseval’s theorem: 7

∞∫
−∞

∣∣ f (ω)
∣∣2 dω=

∞∫
−∞

∣∣ f (t )
∣∣2 d t

which comes up often in the study of optics.

Solution:
∞∫

−∞

∣∣ f (ω)
∣∣2 dω=

∞∫
−∞

f (ω) f ∗ (ω)dω

=
∞∫

−∞

 1p
2π

∞∫
−∞

f (t )e iωt d t


 1p

2π

∞∫
−∞

f ∗ (
t ′

)
e−iωt ′d t ′

dω

The order of integration can be changed, and with the aid of (0.54) we get

∞∫
−∞

∣∣ f (ω)
∣∣2 dω=

∞∫
−∞

∞∫
−∞

f (t ) f ∗ (−t ′
) 1

2π

∞∫
−∞

e iω(t ′−(−t ))dω

d td t ′

=
∞∫

−∞

∞∫
−∞

f (t ) f ∗ (−t ′
)
δ

(
t ′− (−t )

)
d td t ′

=
∞∫

−∞
f (t ) f ∗ (t )d t =

∞∫
−∞

∣∣ f (t )
∣∣2 d t

7For a more general version of the relation, see G. B. Arfken and H. J. Weber, Mathematical
Methods for Physicists 6th ed., Sect. 15.5 (San Diego: Elsevier Academic Press 2005).
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Appendix 0.A Table of Integrals and Sums

The following formulas are useful for various problems encountered in the text.

∞∫
−∞

e−ax2+bx+c d x =
√
π

a
e

b2

4a +c (Re{a} > 0) (0.55)

∞∫
−∞

e i ax

1+x2/b2 d x =π |b|e−|ab| (0.56)

2π∫
0

e±i a cos(θ−θ′) dθ = 2πJ0 (a) (0.57)

a∫
0

J0 (bx) x d x = a

b
J1 (ab) (0.58)

∞∫
0

e−ax2
J0 (bx) x d x = e−b2/4a

2a
(0.59)

∞∫
0

sin2(ax)

(ax)2 d x = π

2a
(0.60)

∫
d y[

y2 + c
]3/2

= y

c
√

y2 + c
(0.61)

∫
d x

x
p

x2 − c
=− 1p

c
sin−1

p
c

|x| (0.62)

π∫
0

sin(ax)sin(bx) d x =
π∫

0

cos(ax)cos(bx) d x = π

2
δab (a,b integer) (0.63)

N∑
n=0

r n = 1− r N+1

1− r
(0.64)

N∑
n=1

r n = r (1− r N )

1− r
(0.65)

∞∑
n=0

r n = 1

1− r
(r < 1) (0.66)
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Exercises

Exercises for 0.1 Vector Calculus

P0.1 Let r = (
x̂+2ŷ−3ẑ

)
m and r0 =

(−x̂+3ŷ+2ẑ
)

m.

(a) Find the magnitude of r, or in other words r .

(b) Find r− r0.

(c) Find the angle between r and r0.

Answer: (a) r =p
14 m; (c) 94◦.

P0.2 Use the dot product (0.2) to show that the cross product E×B is per-
pendicular to E and to B.

P0.3 Verify the “BAC-CAB” rule: A× (B×C) = B (A ·C)−C (A ·B).

P0.4 Prove the following identity:

∇r
1

|r− r′| = −
(
r− r′

)
|r− r′|3 ,

where ∇r operates only on r, treating r′ as a constant vector.

P0.5 Prove that ∇r · (r−r′)
|r−r′|3 is zero, except at r = r′ where a singularity situation

occurs. As in P0.4, ∇r operates only on r, treating r′ as a constant vector.

P0.6 Verify ∇· (∇× f) = 0 for any vector function f.

P0.7 Verify ∇× (
f×g

)= f
(∇·g

)−g (∇· f)+ (
g ·∇)

f− (f ·∇)g.

P0.8 Verify ∇· (f×g
)= g · (∇× f)− f · (∇×g

)
.

P0.9 Verify the following identities:

(a) ∇· (g f
)= f ·∇g + g∇· f

(b) ∇× (
g f

)= (∇g
)× f+ g∇× f.

(c) ∇× (
g f

)= g (∇× f )− f×∇g

P0.10 Show that the Laplacian in cylindrical coordinates can be written as

∇2 = 1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2 + ∂2

∂z2

Solution: (Partial)

Continuing with the approach in Example 0.2, we have

∂2 f

∂x2
=

(
∂2ρ

∂x2

)
∂ f

∂ρ
+ ∂ρ

∂x

∂

∂ρ

∂ f

∂x
+

(
∂2φ

∂x2

)
∂ f

∂φ
+ ∂φ

∂x

∂

∂φ

∂ f

∂x

=
(
∂2ρ

∂x2

)
∂ f

∂ρ
+ ∂ρ

∂x

∂

∂ρ

[(
∂ρ

∂x

)
∂ f

∂ρ
+

(
∂φ

∂x

)
∂ f

∂φ

]
+

(
∂2φ

∂x2

)
∂ f

∂φ
+ ∂φ

∂x

∂

∂φ

[(
∂ρ

∂x

)
∂ f

∂ρ
+

(
∂φ

∂x

)
∂ f

∂φ

]
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and

∇2 f = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2

=
(
∂2ρ

∂x2
+ ∂2ρ

∂y2

)
∂ f

∂ρ
+

((
∂ρ

∂x

)2
+

(
∂ρ

∂y

)2
)
∂2 f

∂ρ2
+2

[(
∂φ

∂x

)(
∂ρ

∂x

)
+

(
∂φ

∂y

)(
∂ρ

∂y

)]
∂2 f

∂φ∂ρ

+
[(
∂2φ

∂x2

)
+

(
∂2φ

∂y2

)]
∂ f

∂φ
+

[(
∂φ

∂x

)2
+

(
∂φ

∂y

)2
]
∂2 f

∂φ2
+ ∂2 f

∂z2

The needed first derivatives are given in Example 0.2. The needed second derivatives are

∂2ρ

∂x2
= 1√

x2 + y2
− x2(

x2 + y2
)3/2

= sin2φ

ρ

∂2φ

∂x2
= 2x y(

x2 + y2
)2

= 2sinφcosφ

ρ2

∂2ρ

∂y2
= 1√

x2 + y2
− y2(

x2 + y2
)3/2

= cos2φ

ρ

∂2φ

∂y2
=− 2x y(

x2 + y2
)2

=− 2sinφcosφ

ρ2

Finish the derivation by substituting these derivatives into the above expression.

P0.11 Verify Stokes’ theorem (0.12) for the function given in Example 0.3.
Take the surface to be a square in the x y-plane contained by x = 0,
x = 1, y = 0, and y = 1, as illustrated in Fig. 0.7.

Figure 0.7

P0.12 Verify the following vector integral theorem for the same volume used
in Example 0.3, but with F = y2xx̂+x y ẑ and G = x2x̂:∫

V

[F (∇·G)+ (G ·∇)F]d v =
∮
S

F (G · n̂)d a

P0.13 Use the divergence theorem to show that the function in P0.5 is 4π
times the three-dimensional delta function

δ3 (
r′− r

)≡ δ(
x ′−x

)
δ

(
y ′− y

)
δ

(
z ′− z

)
which has the property that∫

V

δ3 (
r′− r

)
d v =

{
1 if V contains r′

0 otherwise

Solution: We have by the divergence theorem

∮
S

(
r− r′

)∣∣r− r′
∣∣3

· n̂d a =
∫
V

∇r ·
(
r− r′

)∣∣r− r′
∣∣3

d v
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From P0.5, the argument in the integral on the right-hand side is zero except at r = r′. Therefore,
if the volume V does not contain the point r = r′, then the result of both integrals must be zero.
Let us construct a volume between an arbitrary surface S1 containing r = r′and S2, the surface of
a tiny sphere centered on r = r′. Since the point r = r′ is excluded by the tiny sphere, the result of
either integral in the divergence theorem is still zero. However, we have on the tiny sphere

∮
S2

(
r− r′

)∣∣r− r′
∣∣3

· n̂d a =−
2π∫
0

π∫
0

(
1

r 2
ϵ

)
r 2
ϵ sinφdφdα=−4π

Therefore, for the outer surface S1 (containing r = r′) we must have the equal and opposite result:∮
S1

(
r− r′

)∣∣r− r′
∣∣3

· n̂d a = 4π

This implies ∫
V

∇r ·
(
r− r′

)∣∣r− r′
∣∣3

d v =
{

4π if V contains r′
0 otherwise

The integrand exhibits the same characteristics as the delta function Therefore, ∇r ·
(
r−r′

)
|r−r′|3 =

4πδ3 (
r− r′

)
. The delta function is defined in (0.52)

Exercises for 0.2 Complex Numbers

P0.14 Let z1 = 1− i and z2 = 3+4i . (a) Compute z1 − z2 in rectangular form
and convert the answer to polar form.

(b) Compute z1/z2 in rectangular form and convert the answer to polar
form.

P0.15 Show that
a − i b

a + i b
= e−2i tan−1 b

a

regardless of the sign of a, assuming a and b are real.

P0.16 Invert (0.15) to get both formulas in (0.16). HINT: You can get a second
equation by considering Euler’s equation with a negative angle −φ.

P0.17 Show Re{A}×Re{B} = (AB + A∗B)/4 +C .C .

P0.18 If E0 = |E0|e iδE and B0 = |B0|e iδB , and if k, z, ω, and t are all real, prove

Re
{

E0e i (kz−ωt )
}

Re
{

B0e i (kz−ωt )
}
= 1

4

(
E∗

0 B0 +E0B∗
0

)
+ 1

2
|E0| |B0|cos[2(kz −ωt )+δE +δB ]

P0.19 (a) If sinφ= 2, show that cosφ= i
p

3. HINT: Use sin2φ+cos2φ= 1.

(b) Show that the angle φ in (a) is π/2− i ln(2+p
3).

P0.20 Write A cos(ωt )+2A sin(ωt+π/4) as a single phase-shifted cosine wave
(i.e. find the amplitude and phase of the resultant cosine wave).
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Exercises for 0.4 Fourier Theory

P0.21 Prove that Fourier Transforms have the property of linear superposi-
tion:

F
{

ag (t )+bh (t )
}= ag (ω)+bh (ω)

where g (ω) ≡F
{

g (t )
}

and h(ω) ≡F {h(t )}.

P0.22 Prove F
{

g (at )
}= 1

|a|g
(
ω
a

)
.

P0.23 Prove F
{

g (t −τ)
}= g (ω)e iωτ.

P0.24 Show that the Fourier transform of E(t ) = E0e−
t2

2T 2 cosω0t is

E(ω) = T E0

2

(
e−

(ω+ω0)2

2/T 2 +e−
(ω−ω0)2

2/T 2

)
P0.25 Take the inverse Fourier transform of the result in P0.24. Check that it

returns exactly the original function.

P0.26 The following operation is referred to as the convolution of the func-
tions g (t ) and h(t ):

g (t )⊗h(t )
∣∣
τ ≡

∞∫
−∞

g (t )h(τ− t ) d t

A convolution measures the overlap of g (t) and a reversed h(t) as a
function of the offset τ. The result is a function of τ.

(a) Prove the convolution theorem:

F
{

g (t )⊗h(t )
∣∣
τ

}∣∣
ω
=p

2πg (ω)h(ω)

(b) Prove this related form of the convolution theorem:

F
{

g (t )h(t )
}∣∣
ω = 1p

2π
g (ω′)⊗h(ω′)

∣∣
ω

Solution: Part (a)

F


∞∫

−∞
g (t )h(τ− t ) d t


∣∣∣∣∣∣
ω

= 1p
2π

∞∫
−∞


∞∫

−∞
g (t )h (τ− t )d t

eiωτdτ (Let τ= t ′+ t )

= 1p
2π

∞∫
−∞

∞∫
−∞

g (t )h
(
t ′

)
eiω

(
t ′+t

)
d td t ′

=p
2π

1p
2π

∞∫
−∞

g (t )eiωt d t
1p
2π

∞∫
−∞

h
(
t ′

)
eiωt ′d t ′

=p
2πg (ω)h (ω)
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P0.27 The following operation is called an autocorrelation of the function
h(t ): ∞∫

−∞
h(t )h∗(t −τ)d t

This is similar to the convolution operation described in P0.26, where
h(t ) is integrated against an offset (unreversed) version of itself—hence
the prefix “auto.” Prove the autocorrelation theorem:

F


∞∫

−∞
h(t )h∗(t −τ)d t

=p
2π |h(ω)|2

P0.28 (a) Compute the Fourier transform of a Gaussian function, g (t) =
e−t 2/2T 2

. Do the integral by hand using the table in Appendix 0.A.

(b) Compute the Fourier transform of a sine function, h(t) = sinω0t .
Do the integral without a computer using sin(x) = (e i x −e−i x )/2i , com-
bined with the integral formula (0.54).

(c) Use your results from parts (a) and (b) together with the convolution
theorem from P0.26(b) to evaluate the Fourier transform of f (t) =
e−t 2/2T 2

sinω0t . (The answer should be similar to P0.24).

(d) Plot f (t) and the imaginary part of its Fourier transform for the
parameters ω0 = 1 and T = 8.



Chapter 1

Electromagnetic Phenomena

In 1861, James Maxwell assembled the various known relationships of electricity
and magnetism into a concise1 set of equations:2

∇·E = ρ

ϵ0

(Gauss’ Law) (1.1)

∇·B = 0 (Gauss’ Law for magnetism) (1.2)

∇×E =−∂B

∂t
(Faraday’s Law) (1.3)

∇× B

µ0

= ϵ0
∂E

∂t
+ J (Ampere’s Law revised by Maxwell) (1.4)

Here E and B represent electric and magnetic fields, respectively. The charge
density ρ describes the charge per volume distributed through space.3 The current
density J describes the motion of charge density (in units of ρ times velocity). The
constant ϵ0 is called the permittivity, and the constantµ0 is called the permeability.
Taken together, these are known as Maxwell’s equations.

After introducing a key revision of Ampere’s law, Maxwell realized that together
these equations comprise a complete self-consistent theory of electromagnetic
phenomena. Moreover, the equations imply the existence of electromagnetic
waves, which travel at the speed of light. Since the speed of light had been
measured before Maxwell’s time, it was immediately apparent (as was already
suspected) that light is a high-frequency manifestation of the same phenomena
that govern the influence of currents and charges upon each other. Previously,
optics had been considered a topic quite separate from electricity and magnetism.
Once the connection was made, it became clear that Maxwell’s equations form
the theoretical foundations of optics, and this is where we begin our study of light.

1In Maxwell’s original notation, this set of equations was hardly concise, written without the
convenience of modern vector notation or ∇. His formulation wouldn’t fit easily on a T-shirt!

2See J. D. Jackson, Classical Electrodynamics, 3rd ed., p. 1 (New York: John Wiley, 1999) or the
back cover of D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (New Jersey: Prentice-Hall,
1999).

3In other parts of this book, we use ρ for the radius in cylindrical coordinates, not to be confused
with charge density, which makes an appearance only in this chapter.

25
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1.1 Gauss’ Law

The force on a point charge q located at r exerted by another point charge q ′

located at r′ is
F = qE(r) (1.5)

where

E (r) = q ′

4πϵ0

(
r− r′

)
|r− r′|3 (1.6)

This relationship is known as Coulomb’s law. The force is directed along the
vector r− r′, which points from charge q ′ to q as seen in Fig. 1.1. The length or
magnitude of this vector is given by

∣∣r− r′
∣∣ (i.e. the distance between q ′ and q).

The familiar inverse square law can be seen by noting that
(
r− r′

)/∣∣r− r′
∣∣ is a unit

vector. We have written the force in terms of an electric field E (r), which is defined
throughout space (regardless of whether a second charge q is actually present).
The permittivity ϵ0 amounts to a proportionality constant.

Origin

  

Figure 1.1 The geometry of
Coulomb’s law for a point charge.

The total force from a collection of charges is found by summing expression
(1.5) over all charges q ′

n associated with their specific locations r′n . If the charges
are distributed continuously throughout space, having density ρ

(
r′

)
(units of

charge per volume), the summation for finding the net electric field at r becomes
an integral:

E (r) = 1

4πϵ0

∫
V

ρ
(
r′

) (
r− r′

)
|r− r′|3 d v ′ (1.7)

This three-dimensional integral4 gives the net electric field produced by the
charge density ρ that exists in volume V .      

Origin

Figure 1.2 The geometry of
Coulomb’s law for a charge dis-
tribution.

Gauss’ law (1.1), the first of Maxwell’s equations, follows directly from (1.7)
with some mathematical manipulation. No new physical phenomenon is intro-
duced in this process.5

Derivation of Gauss’ law

We begin with the divergence of (1.7):

∇·E (r) = 1

4πϵ0

∫
V

ρ
(
r′

)∇r ·
(
r− r′

)
|r− r′|3 d v ′ (1.8)

The subscript on ∇r indicates that it operates on r while treating r′, the dummy
variable of integration, as a constant. The integrand contains a remarkable mathe-
matical property that can be exploited, even without specifying the form of the

4Here d v ′ stands for d x′d y ′d z′ and r′ = x′x̂+ y ′ŷ+ z′ẑ (in Cartesian coordinates).
5Actually, Coulomb’s law applies only to static charge configurations, and in that sense it is

incomplete since it implies an instantaneous response of the field to a reconfiguration of the
charge. The generalized version of Coulomb’s law, one of Jefimenko’s equations, incorporates
the fact that electromagnetic news travels at the speed of light. See D. J. Griffiths, Introduction
to Electrodynamics, 3rd ed., Sect. 10.2.2 (New Jersey: Prentice-Hall, 1999). Ironically, Gauss’ law,
which can be derived from Coulomb’s law, holds perfectly whether the charges remain still or are in
motion.
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charge distributionρ
(
r′

)
. In modern mathematical language, the vector expression

in the integral is a three-dimensional delta function (see (0.52)):6

∇r ·
(
r− r′

)
|r− r′|3 ≡ 4πδ3 (

r′− r
)≡ 4πδ

(
x ′−x

)
δ

(
y ′− y

)
δ

(
z ′− z

)
(1.9)

A derivation of this formula is addressed in problem P0.13. The delta function
allows the integral in (1.8) to be performed, and the relation becomes simply

∇·E (r) = ρ (r)

ϵ0

which is the differential form of Gauss’ law (1.1).       

Figure 1.3 Gauss’ law in integral
form relates the flux of the elec-
tric field through a surface to the
charge contained inside that sur-
face.

The (perhaps more familiar) integral form of Gauss’ law can be obtained by
integrating (1.1) over a volume V and applying the divergence theorem (0.11) to
the left-hand side: ∮

S

E (r) · n̂ d a = 1

ϵ0

∫
V

ρ (r) d v (1.10)

This form of Gauss’ law shows that the total electric field flux extruding through a
closed surface S (i.e. the integral on the left side) is proportional to the net charge
contained within it (i.e. within volume V contained by S).

Example 1.1

Suppose we have an electric field given by E = (αx2 y3x̂+βz4ŷ)cosωt . Use Gauss’
law (1.1) to find the charge density ρ(x, y, z, t ).

Solution:

ρ = ϵ0∇·E = ϵ0

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(αx2 y3x̂+βz4ŷ)cosωt = 2ϵ0αx y3 cosωt

Carl Friedrich Gauss (1777–1855,
German) was born in Braunschweig,
Germany to a poor family. Gauss was
a child prodigy, and he made his first
significant advances to mathematics
as a teenager. In grade school, he pur-
portedly was asked to add all integers
from 1 to 100, which he did in seconds
to the astonishment of his teacher. (Pre-
sumably, Friedrich immediately realized
that the numbers form fifty pairs equal to
101.) Gauss made important advances
in number theory and differential geom-
etry. He developed the law discussed
here as one of Maxwell’s equations in
1835, but it was not published until 1867,
after Gauss’ death. Ironically, Maxwell
was already using Gauss’ law by that
time. (Wikipedia)

1.2 Gauss’ Law for Magnetic Fields

In order to ‘feel’ a magnetic force, a charge q must be moving at some velocity (call
it v). The magnetic field arises itself from charges that are in motion. We consider
the magnetic field to arise from a distribution of moving charges described by a
current density J

(
r′

)
throughout space. The current density has units of charge

times velocity per volume (or equivalently, current per cross sectional area). The
magnetic force law analogous to Coulomb’s law is

F = qv×B (1.11)

6For a derivation of Gauss’ law from Coulomb’s law that does not rely directly on the Dirac delta
function, see J. D. Jackson, Classical Electrodynamics 3rd ed., pp. 27-29 (New York: John Wiley,
1999).

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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where

B (r) = µ0

4π

∫
V

J
(
r′

)× (
r− r′

)
|r− r′|3 d v ′ (1.12)

The latter equation is known as the Biot-Savart law. The permeability µ0 dictates
the strength of the magnetic field, given the current distribution.

Jean-Baptiste Biot (1774-1862, French)
was born in Paris. He attended the
École Polytechnique where mathemati-
cian Gaspard Monge recognized his aca-
demic potential. After graduating, Biot
joined the military and then took part in
an insurrection on the side of the Roy-
alists. He was captured, and his career
might of have met a tragic ending there
had Monge not successfully pleaded
for his release from jail. Biot went on to
become a professor of physics at the
College de France. Among other con-
tributions, Biot participated in the first
hot-air balloon ride with Gay-Lussac and
correctly deduced that meteorites that
fell on L’Aigle, France in 1803 came from
space. Later Biot collaborated with the
younger Felix Savart (1791-1841) on
the theory of magnetism and electrical
currents. They formulated their famous
law in 1820. (Wikipedia)

As with Coulomb’s law, we can apply mathematics to the Biot-Savart law to
obtain another of Maxwell’s equations. Nevertheless, the essential physics is
already inherent in the Biot-Savart law.7 Using the result from P0.4 and P0.9(c),
we can rewrite (1.12) as8

B (r) =− µ0

4π

∫
V

J
(
r′

)×∇r
1

|r− r′| d v ′ = µ0

4π
∇×

∫
V

J
(
r′

)
|r− r′| d v ′ (1.13)

Since the divergence of a curl is identically zero (see P0.6), we get straight away
the second of Maxwell’s equations (1.2)

∇·B = 0

which is known as Gauss’ law for magnetic fields. (Two equations down; two to
go.)

The similarity between ∇·B = 0 and ∇·E = ρ/ϵ0, Gauss’ law for electric fields,
is immediately apparent. In integral form, Gauss’ law for magnetic fields looks the
same as (1.10), only with zero on the right-hand side. If one were to imagine the
existence of magnetic monopoles (i.e. isolated north or south ‘charges’), then the
right-hand side would not be zero. The law implies that the total magnetic flux
extruding through any closed surface balances, with as many field lines pointing
inwards as pointing outwards.

Example 1.2

The field surrounding a magnetic dipole is given by

B =β[
3xzx̂+3y zŷ+ (

3z2 − r 2) ẑ
]/

r 5

where r ≡
√

x2 + y2 + z2. Show that this field satisfies Gauss’ law for magnetic
fields (1.2).

7Like Coulomb’s law, the Biot-Savart law is incomplete since it also implies an instantaneous
response of the magnetic field to a reconfiguration of the currents. The generalized version of the
Biot-Savart law, another of Jefimenko’s equations, incorporates the fact that electromagnetic news
travels at the speed of light. Ironically, Gauss’ law for magnetic fields and Maxwell’s version of
Ampere’s law, derived from the Biot-Savart law, hold perfectly whether the currents are steady or
vary in time. The Jefimenko equations, analogs of Coulomb and Biot-Savart, also embody Faraday’s
law, the only of Maxwell’s equations that cannot be derived from the usual forms of Coulomb’s law
and the Biot-Savart law. See D. J. Griffiths, Introduction to Electrodynamics, 3rd ed., Sect. 10.2.2
(New Jersey: Prentice-Hall, 1999).

8Note that ∇r ignores the variable of integration r′.

https://en.wikipedia.org/wiki/Jean-Baptiste_Biot
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Solution:

∇·B =β
[

3
∂

∂x

( xz

r 5

)
+3

∂

∂y

( y z

r 5

)
+ ∂

∂z

(
3z2

r 5 − 1

r 3

)]
=β

[
3

(
z

r 5 − 5xz

r 6

∂r

∂x

)
+3

(
z

r 5 − 5y z

r 6

∂r

∂y

)
+

(
6z

r 5 − 15z2

r 6

∂r

∂z
+ 3

r 4

∂r

∂z

)]
=β

[
12z

r 5 − 15z

r 6

(
x
∂r

∂x
+ y

∂r

∂y
+ z

∂r

∂z

)
+ 3

r 4

∂r

∂z

]

The necessary derivatives are ∂r /∂x = x
/√

x2 + y2 + z2 = x/r , ∂r /∂y = y/r , and

∂r /∂z = z/r , which lead to

∇·B =β
[

12z

r 5 − 15z

r 5 + 3z

r 5

]
= 0

1.3 Faraday’s Law

Michael Faraday (1791–1867, English)
was one of the greatest experimental
physicists in history. Born on the out-
skirts of London, his family was not well
off, his father being a blacksmith. The
young Michael Faraday only had access
to a very basic education, and so he
was mostly self-taught and never did
acquire much skill in mathematics. As a
teenager, he obtained a seven-year ap-
prenticeship with a book binder, during
which time he read many books, includ-
ing books on science and electricity.
Given his background, Faraday’s entry
into the scientific community was very
gradual, from servant to assistant and
eventually to director of the laboratory at
the Royal Institution. Faraday is perhaps
best known for his work that established
the law of induction and for the discovery
that magnetic fields can interact with
light, known as the Faraday effect. He
also made many advances to chemistry
during his career including figuring out
how to liquify several gases. Faraday
was a deeply religious man, serving as a
Deacon in his church. (Wikipedia)

Michael Faraday discovered that changing magnetic fields induce electric fields.
This distinct physical effect, called induction, can be observed when a magnet is
waved by a loop of wire. Faraday’s law says that a change in magnetic flux through
a circuit loop (see Fig. 1.4) induces a voltage around the loop according to∮

C

E ·dℓ=− ∂

∂t

∫
S

B · n̂ d a (1.14)

The right side describes a change in the magnetic flux through a surface, and the
left side describes the voltage around the loop containing the surface.

We apply Stokes’ theorem (0.12) to the left-hand side of Faraday’s law and
obtain∫

S

(∇×E) · n̂ d a =− ∂

∂t

∫
S

B · n̂ d a or
∫
S

(
∇×E+ ∂B

∂t

)
· n̂ d a = 0 (1.15)

Since this equation is true regardless of what surface is chosen, it implies

∇×E =−∂B

∂t

which is the differential form of Faraday’s law (1.4) (three of Maxwell’s equations
down; one to go).

  

    

Magnet

N

Figure 1.4 Faraday’s law.

Example 1.3

For the electric field given in Example 1.1, E = (αx2 y3x̂+βz4ŷ)cosωt , use Faraday’s
law (1.3) to find B(x, y, z, t ).

https://en.wikipedia.org/wiki/Michael_Faraday
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Solution:

∂B

∂t
=−∇×E =−cosωt

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

αx2 y3 βz4 0

∣∣∣∣∣∣∣
=−cosωt

[
x̂
∂

∂y
(0)− x̂

∂

∂z

(
βz4)− ŷ

∂

∂x
(0)+ ŷ

∂

∂z

(
αx2 y3)

+ẑ
∂

∂x

(
βz4)− ẑ

∂

∂y

(
αx2 y3)]

= (
4βz3x̂+3αx2 y2ẑ

)
cosωt

Integrating in time, we get

B = (
4βz3x̂+3αx2 y2ẑ

) sinωt

ω

plus possibly a constant field.

André-Marie Ampère (1775-1836,
French) was born in Lyon, France. The
young André-Marie was tutored in Latin
by his father, which gave him access to
the mathematical works of Euler and
Bernoulli to which he was drawn at
an early age. When Ampère reached
young adulthood, French revolutionaries
executed his father. In 1799, Ampère
married Julie Carron, who died of ill-
ness a few years later. These tragedies
weighed heavy on Ampère through-
out his life, especially because he was
away from his wife during much of their
short life together, while he worked as
a professor of physics and chemistry
in Bourg. After her death, Ampère was
appointed professor of mathematics at
the University of Lyon and then in 1809
at the Ècole Polytechnique in Paris. Af-
ter hearing that a current-carrying wire
could attract a compass needle in 1820,
Ampère quickly developed the theory of
electromagnetism. (Wikipedia)

1.4 Ampere’s Law

The Biot-Savart law (1.12) can also be used to derive Ampere’s law. Ampere’s law
is merely the inversion of the Biot-Savart law (1.12) so that J appears by itself,
unfettered by integrals or the like.

Inversion of Biot-Savart Law

We take the curl of (1.12):

∇×B (r) = µ0

4π

∫
V

∇r ×
[

J
(
r′

)× (
r− r′

)
|r− r′|3

]
d v ′ (1.16)

We next apply the differential vector rule from P0.7 while noting that J
(
r′

)
does not

depend on r so that only two terms survive. The curl of B (r) then becomes

∇×B (r) = µ0

4π

∫
V

(
J
(
r′

)[∇r ·
(
r− r′

)
|r− r′|3

]
− [

J
(
r′

) ·∇r
] (

r− r′
)

|r− r′|3
)

d v ′ (1.17)

According to (1.9), the first term in the integral is 4πJ
(
r′

)
δ3

(
r′− r

)
, which is easily

integrated. To make progress on the second term, we observe that the gradient can
be changed to operate on the primed variables without affecting the final result
(i.e. ∇r →−∇r′ ). In addition, we take advantage of a vector integral theorem (see
P0.12) to arrive at

∇×B (r) =µ0J (r)− µ0

4π

∫
V

(
r− r′

)
|r− r′|3

[∇r′ · J
(
r′

)]
d v ′+ µ0

4π

∮
S

(
r− r′

)
|r− r′|3

[
J
(
r′

) · n̂
]

d a′ (1.18)

https://en.wikipedia.org/wiki/Andre-Marie_Ampere
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The last term in (1.18) vanishes if we assume that the current density J is com-
pletely contained within the volume V so that it is zero at the surface S. Thus, the
expression for the curl of B (r) reduces to

∇×B (r) =µ0J (r)− µ0

4π

∫
V

(
r− r′

)
|r− r′|3

[∇r′ · J
(
r′

)]
d v ′ (1.19)

As we will see in Section 1.5, ∇· J = 0 for static charge distributions; in such cases
the latter term in (1.19) vanishes

∇· J ∼= 0 (steady-state approximation) (1.20)

and we have succeeded in isolating J and obtained Ampere’s law.

Without Maxwell’s correction, Ampere’s law

∇×B =µ0J (1.21)

only applies to quasi steady-state situations. The physical interpretation of Am-
pere’s law is more apparent in integral form. We integrate both sides of (1.21) over
an open surface S, bounded by contour C and apply Stokes’ theorem (0.12) to the
left-hand side: ∮

C

B (r) ·dℓ=µ0

∫
S

J (r) · n̂ d a ≡µ0I (1.22)

This law says that the line integral of B around a closed loop C is proportional to
the total current flowing through the loop (see Fig. 1.5). The units of J are current
per area, so the surface integral containing J yields the current I in units of charge
per time.

  

  

Figure 1.5 Ampere’s law.

1.5 Maxwell’s Adjustment to Ampere’s Law

Maxwell was the first to realize that Ampere’s law was incomplete as written in
(1.21) since there exist situations where ∇· J ̸= 0 (especially the case for optical
phenomena). Maxwell figured out that (1.20) should be replaced with

∇· J =−∂ρ
∂t

(1.23)

This is called the continuity equation for charge and current densities. Simply
stated, if there is net current flowing into a volume there ought to be charge piling
up inside. For the steady-state situation inherently considered by Ampere, the
current into and out of a volume is balanced so that ∂ρ

/
∂t = 0.

Derivation of the Continuity Equation
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Consider a volume of space enclosed by a surface S through which current is
flowing. The total current exiting the volume is

I =
∮
S

J · n̂ d a (1.24)

where n̂ is the outward normal to the surface. The units on this equation are that
of current, or charge per time, leaving the volume.

Since we have considered a closed surface S, the net current leaving the enclosed
volume V must be the same as the rate at which charge within the volume vanishes:

I =− ∂

∂t

∫
V

ρ d v (1.25)

Upon equating these two expressions for current, as well as applying the diver-
gence theorem (0.11) to the former, we get∫

V

∇· Jd v =−
∫
V

∂ρ

∂t
d v or

∫
V

(
∇· J+ ∂ρ

∂t

)
d v = 0 (1.26)

Since (1.26) is true regardless of which volume V we choose, it implies (1.23).

James Clerk Maxwell (1831–1879,
Scottish) was born to a wealthy family
in Edinburgh, Scotland. Originally, his
name was John Clerk, but he added his
mother’s maiden name when he inher-
ited an estate from her family. Maxwell
was a bright and inquisitive child and dis-
played an unusual gift for mathematics
at an early age. He attended Edinburgh
University and then Trinity College at
Cambridge University. Maxwell started
his career as a professor at Aberdeen
University, but lost his job a few years
later during restructuring, at which time
Maxwell took a post at King’s College of
London. Maxwell is best known for his
fundamental contributions to electricity
and magnetism and the kinetic theory
of gases. He studied numerous other
subjects, including the human percep-
tion of color and color-blindness, and
is credited with producing the first color
photograph. He originally postulated that
electromagnetic waves propagated in
a mechanical “luminiferous ether.” He
founded the Cavendish laboratory at
Cambridge in 1874, which has produced
28 Nobel prizes to date. Maxwell, one of
Einstein’s heros, died of stomach cancer
in his forties. (Wikipedia)

Maxwell’s main contribution (aside from organizing other people’s formulas9

and recognizing them as a complete set of coupled differential equations—a big
deal) was the injection of the continuity equation (1.23) into the derivation of
Ampere’s law (1.19). This yields

∇×B =µ0J+ µ0

4π

∂

∂t

∫
V

ρ
(
r′

) (
r− r′

)
|r− r′|3 d v ′ (1.27)

Then substitution of (1.7) into this formula gives

∇× B

µ0

= J+ϵ0
∂E

∂t

the last of Maxwell’s equations (1.4).
This revised version of Ampere’s law includes the additional term ϵ0∂E/∂t ,

which is known as the displacement current (density). The displacement current
exists even in the absence of any actual charge density ρ.10 It indicates that
a changing electric field behaves like a current in the sense that it produces

9Although Gauss developed his law in 1835, it was not published until after his death in 1867,
well after Maxwell published his laws of electromagnetism, so in practice Maxwell accomplished
much more than merely fixing Ampere’s law.

10Based on (1.27), one might think that the displacement current ϵ0∂E/∂t ought to be zero in a
region of space with no charge density ρ. However, in (1.27) ρ appears in a volume integral over a
region of space sufficiently large (consistent with a previous supposition) to include any charges
responsible for the field E; presumably, all fields arise from sources.

https://en.wikipedia.org/wiki/James_Clerk_Maxwell
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magnetic fields. The similarity between Faraday’s law and the corrected Ampere’s
law (1.4) is apparent. No doubt this played a part in motivating Maxwell’s work.

In summary, in the previous section we saw that the basic physics in Ampere’s
law is present in the Biot-Savart law. Infusing it with charge conservation (1.23)
yields the corrected form of Ampere’s law.

Example 1.4

(a) Use Gauss’ law to find the electric field in a gap that interrupts a current-carrying
wire, as shown in Fig. 1.6.

(b) Find the strength of the magnetic field on contour C using Ampere’s law applied
to surface S1.

(c) Show that the displacement current in the gap leads to the identical magnetic
field when using surface S2.

Solution: (a) We’ll assume that the cross-sectional area of the wire A is much wider
than the gap separation. Then the electric field in the gap will be uniform, and the
integral on the left-hand side of (1.10) reduces to E A since there is essentially no
field other than in the gap. If the accumulated charge on the ‘plate’ is Q, then the
right-hand side of (1.10) integrates to Q/ϵ0, and the electric field turns out to be
E =Q/(ϵ0 A).

C

  
II

Figure 1.6 Charging capacitor.

(b) Let the contour C be a circle at radius r . The magnetic field points around the
circumference with constant strength. The left-hand side of (1.22) becomes 2πr B
while the right-hand side is

µ0

∫
S

J · n̂d a =µ0I =µ0
∂Q

∂t

This gives for the magnetic field

B = µ0

2πr

∂Q

∂t

(c) If instead we use the displacement current ϵ0∂E/∂t in place of J in the right-hand
side of right-hand side of (1.22), we get for that piece

µ0

∫
S

(
ϵ0
∂E

∂t

)
· n̂d a =µ0ϵ0

∂E

∂t
A =µ0

∂Q

∂t

which is the same as before.

Example 1.5

For the electric field E = (αx2 y3x̂+βz4ŷ)cosωt (see Example 1.1) and the associ-
ated magnetic field B = (

4βz3x̂+3αx2 y2ẑ
) sinωt

ω (see Example 1.3), find the current
density J (x, y, z, t ).
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Solution:

J =∇×
*

B

µ0
−ϵ0

∂E

∂t
= sinωt

µ0ω

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

4βz3 0 3αx2 y2

∣∣∣∣∣∣∣+ϵ0ω(αx2 y3x̂+βz4ŷ)sinωt

= sinωt

µ0ω

[
6αx2 y x̂−6αx y2ŷ+12βz2ŷ

]+ϵ0ω(αx2 y3x̂+βz4ŷ)sinωt

=
[(
ϵ0ωαx2 y3 + 6αx2 y

µ0ω

)
x̂+

(
ϵ0ωβz4 + 12βz2

µ0ω
− 6αx y2

µ0ω

)
ŷ
]

sinωt

1.6 Polarization of Materials

We are essentially finished with our analysis of Maxwell’s equations except for a
brief discussion of current density J and charge density ρ. For convenience, it is
common to decompose the current density into three categories:

J = Jfree + Jm + Jp (1.28)

First, as you might expect, currents can arise from free charges in motion such
as electrons in a metal, referred to as Jfree. Second, individual atoms can exhibit
internal currents that give rise to paramagnetic and diamagnetic effects, denoted
by Jm. These are seldom important in optics problems, and so we will ignore
these types of currents by writing Jm = 0.

Figure 1.7 In a uniformly polar-
ized medium the divergence of
the polarization function is zero
(∇·P = 0) and there is no net charge
within a volume that is large com-
pared to the molecular structure.

The third term in (1.28) arises in dielectric materials where charges are bound
to individual molecules and not free to move through the material. While the
charges within each molecules are bound, they are still able to distort in response
to applied electric fields, causing the dipole moment of the molecules to change.
We describe the spatial distribution of these microscopic dipoles with the function
P, called the polarization,11 measured in units of dipoles per volume, or charge
times length per volume. A region of uniform polarization is depicted in Fig. 1.7.

When the applied electric field varies in time, the dipoles change their strength
or orientation as a function of time and the movement of these bound charges
cause an effective current density to arise in the medium, referred to as the
polarization current Jp. Note that the time-derivative of an individual dipole
moment renders charge times velocity. Thus, the time derivative of ‘sloshing’
dipoles per volume gives a current density equal to

Jp = ∂P

∂t
(1.29)

This polarization current Jp gives rise to the index of refraction for dielectric
materials, as we will see in the next chapter.

11Unfortunately, the word polarization gets double usage. It also refers to the orientation of the
electric field in electromagnetic waves, which is the topic of chapter 6.
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We next turn our attention to the charge density, which is often decomposed
into the free charge density and the bound charge density as

ρ = ρfree +ρp (1.30)

We seldom consider the propagation of electromagnetic waveforms through
electrically charged materials, and so in this book we will always write ρfree = 0.
One might be tempted in this case to assume that the overall charge density is
zero, but this would be wrong. Even in a material that is electrically neutral overall,
the polarization P can vary in space, leading to local concentrations of positive
or negative charges. This type of charge density is denoted by ρp. It arises from
nonuniform arrangements of dipoles, as depicted in Fig. 1.8.

Figure 1.8 In a nonuniformly po-
larized medium with ∇·P ̸= 0 local
concentrations of charge density
can occur.

To connect ρp with P, we write the continuity equation (1.23) for the current
and charge densities associated with the polarization:

∇· Jp =−∂ρp

∂t
(1.31)

Substitution of (1.29) into this equation immediately yields

ρp =−∇·P (1.32)

Example 1.6 To better appreciate local buildup of charge due to variation in
the medium polarization, consider the divergence theorem (0.11) applied
to P:

−
∮
S

P (r) · n̂ d a =−
∫
V

∇·P (r)d v

The left-hand side is a surface integral, which after integrating gives units
of charge. Physically, it is the sum of the charges touching the inside of
surface S, multiplied by a minus since by convention dipole vectors point
from the negatively charged end of a molecule to the positively charged end.
When ∇·P is zero, there are equal numbers of positive and negative charges
touching S from within, as depicted in Fig. 1.7. When ∇·P is not zero, the
positive and negative charges touching S are not balanced, as depicted in
Fig. 1.8. Essentially, excess charge ends up within the volume because the
nonuniform alignment of dipoles causes them to be cut preferentially at
the surface.

The figures may give the impression that you could always just draw a
surface that avoids cutting any dipoles. However, the function P (r) is con-
tinuous, while the figures depict crudely just a few dipoles. In a continuous
material you can’t draw a surface that avoids cutting dipoles.
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In summary, Maxwell’s equations in an electrically neutral (ρfree = 0) nonmag-
netic (Jm = 0) medium can be written in terms of the polarization P as12

∇·E =−∇·P

ϵ0

(Gauss’ law) (1.33)

∇·B = 0 (Gauss’ law for magnetism) (1.34)

∇×E =−∂B

∂t
(Faraday’s law) (1.35)

∇× B

µ0

= ϵ0
∂E

∂t
+ ∂P

∂t
+ Jfree (Ampere’s law; fixed by Maxwell) (1.36)

1.7 The Wave Equation

When Maxwell unified electromagnetic theory, he immediately noticed that waves
are solutions to his set of equations. In fact, his desire to find a set of equations
that allowed for waves aided his effort to find the correct equations. After all, it was
already known that light traveled as waves. Kirchhoff had previously pointed out
that 1

/p
ϵ0µ0 gives the correct speed of light c = 3×108 m/s (which had previously

been measured). Faraday and Kerr had observed that strong magnetic and electric
fields affect light propagating in crystals. The time was right to suspect that light
was an electromagnetic phenomena taking place at high frequency.

At first glance, Maxwell’s equations might not immediately suggest (to the
inexperienced eye) that waves are solutions. However, we can manipulate the
equations (first order differential equations that couple E to B) into the familiar
wave equation (decoupled second order differential equations for either E or B).
You should become familiar with this derivation. In what follows, we will derive
the wave equation for E. The derivation of the wave equation for B is very similar
(see problem P1.6).

Derivation of the Wave Equation

Taking the curl of (1.3) gives

∇× (∇×E)+ ∂

∂t
(∇×B) = 0 (1.37)

We may eliminate ∇×B by substitution from (1.4), which gives

∇× (∇×E)+µ0ϵ0

∂2E

∂t 2 =−µ0

∂J

∂t
(1.38)

12It is not uncommon to see the macroscopic Maxwell equations written in terms of two auxiliary
fields: H and D. The field H is useful in magnetic materials. In these materials, the combination
B

/
µ0 in Ampere’s law is replaced by H ≡ B/µ0 −M, where Jm =∇×M is the current associated with

the material’s magnetization. Since we only consider nonmagnetic materials (M = 0), there is little
point in using H. The field D, called the displacement, is defined as D ≡ ϵ0E+P. This combination
of E and P occurs in Coulomb’s law and Ampere’s law. For physical clarity, the authors of this book
elect to retain the prominence of the polarization P in the equations.
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Next we apply the vector identity (0.10), ∇×(∇×E) =∇ (∇·E)−∇2E, and use Gauss’
law (1.1) to replace the term ∇·E, which brings us to

∇2E−µ0ϵ0

∂2E

∂t 2 =µ0

∂J

∂t
+ ∇ρ
ϵ0

(1.39)

If we perform the above derivation starting from (1.33)–(1.36) (or equivalently,
if we substitute (1.28)–(1.32) into (1.39)), we obtain a form that is more useful for
optics:

∇2E−µ0ϵ0
∂2E

∂t 2 =µ0
∂Jfree

∂t
+µ0

∂2P

∂t 2 − 1

ϵ0

∇ (∇·P) (1.40)

The left-hand side of (1.40), when set to zero, is the familiar wave equation.
However, the right-hand side contains a number of ‘source terms’, which arise
when various currents and/or polarizations are present. The first term on the
right-hand side of (1.40) describes currents of free charges, which are important
for determining the reflection of light from a metallic surface or for determining
the propagation of light in a plasma. The second term on the right-hand side
describes dipole oscillations, which behave similar to currents. These dipole oscil-
lations play a prominent role when light propagates in nonconducting materials.
The final term on the right-hand side of (1.40) is important in anisotropic media
such as crystals. In this case, the polarization P responds to the electric field along
a direction not necessarily parallel to E, due to the influence of the crystal lattice
(addressed in chapter 5).

In summary, when light propagates in a material, at least one of the terms on
the right-hand side of (1.40) will be nonzero. As an example, in glass, Jfree = 0 and
∇·P = 0, but ∂2P

/
∂t 2 ̸= 0 since the medium polarization responds to the light

field, giving rise to refractive index (discussed in chapter 2).

Example 1.7

Show that the electric field

E = (αx2 y3x̂+βz4ŷ)cosωt

and the associated charge density (see Example 1.1)

ρ = 2ϵ0αx y3 cosωt

together with the associated current density (see Example 1.5)

J =
[(
ϵ0ωαx2 y3 + 6αx2 y

µ0ω

)
x̂+

(
ϵ0ωβz4 + 12βz2

µ0ω
− 6αx y2

µ0ω

)
ŷ
]

sinωt

satisfy the wave equation (1.39).

Solution: We have

∇2E−µ0ϵ0
∂2E

∂t 2 = [
α

(
2y3 +6x2 y

)
x̂+12βz2ŷ

]
cosωt

+µ0ϵ0ω
2(αx2 y3x̂+βz4ŷ)cosωt

= [
α

(
2y3 +6x2 y +µ0ϵ0ω

2x2 y3) x̂+β(
12z2 +µ0ϵ0ω

2z4) ŷ
]

cosωt
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Similarly,

µ0
∂J

∂t
+ ∇ρ
ϵ0

= [(
µ0ϵ0ω

2αx2 y3 +6αx2 y
)

x̂+ (
µ0ϵ0ω

2βz4 +12βz2 −6αx y2) ŷ
]

cosωt

+ [
2αy3x̂+6αx y2ŷ

]
cosωt

= [
α

(
2y3 +6x2 y +µ0ϵ0ω

2x2 y3) x̂+β(
12z2 +µ0ϵ0ω

2z4) ŷ
]

cosωt

The two expressions are identical, and the wave equation is satisfied.13

The magnetic field B satisfies a similar wave equation, decoupled from E (see
P1.6). However, the two waves are not independent. The fields for E and B must
be chosen to be consistent with each other through Maxwell’s equations. After
solving the wave equation (1.40) for E, one can obtain the consistent B from E via
Faraday’s law (1.35).

In vacuum, all of the terms on the right-hand side in (1.40) are zero. In this
case, the wave equation reduces to

∇2E−µ0ϵ0
∂2E

∂t 2 = 0 (vacuum) (1.41)

Solutions to this equation can take on every imaginable functional shape (speci-
fied at a given instant—the evolution thereafter being controlled by (1.41)). More-
over, since the differential equation is linear, any number of solutions can be
added together to create other valid solutions. Consider the subclass of solutions
that propagate in a particular direction. These waveforms preserve shape while
traveling with speed

c ≡ 1
/p

ϵ0µ0 = 2.9979×108 m/s (1.42)

In this case, E depends on the argument û·r−ct , where û is a unit vector specifying
the direction of propagation. The shape is preserved since features occurring at a
given position recur ‘downstream’ at a distance ct after a time t . By checking this
solution in (1.41), one confirms that the speed of propagation is c (see P1.8). As
mentioned previously, one may add together any combination of solutions (even
with differing directions of propagation) to form other valid solutions.

13The expressions in Example 1.7 hardly look like waves. The (quite unlikely) current and charge
distributions, which fill all space, would have to be artificially induced rather than arise naturally in
response to a field disturbance on a medium.
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Exercises

Exercises for 1.1 Gauss’ Law

P1.1 Consider an infinitely long hollow cylinder with inner radius a and
outer radius b as shown in Fig. 1.9. Assume that the cylinder has a
charge density ρ = k/s2 for a < s < b and no charge elsewhere, where s
is the radial distance from the axis of the cylinder. Use Gauss’ Law in
integral form to find the electric field produced by this charge for each
of the three regions: s < a, a < s < b, and s > b.

a

b

Figure 1.9 A charged cylinder with
charge located between a and b.

HINT: For each region first draw an appropriate ‘Gaussian surface’ and
integrate the charge density over the volume to figure out the enclosed
charge. Then use Gauss’ law in integral form and the symmetry of the
problem to solve for the electric field.

Exercises for 1.3 Faraday’s Law

P1.2 Suppose that an electric field is given by E(r, t ) = E0 cos
(
k · r−ωt +φ)

,
where k⊥E0 and φ is a constant phase. Show that

B(r, t ) = k×E0

ω
cos

(
k · r−ωt +φ)

is consistent with (1.3).

Exercises for 1.4 Ampere’s Law

P1.3 A conducting cylinder with the same geometry as P1.1 carries a current
density J = k/sẑ along the axis of the cylinder for a < s < b, where s is
the radial distance from the axis of the cylinder. Using Ampere’s Law
in integral form, find the magnetic field due to this current in regions
(a) s < a, (b) a < s < b, and (c) s > b.

HINT: For each region first draw an appropriate ‘Amperian loop’ and
integrate the current density over the surface to figure out how much
current passes through the loop. Then use Ampere’s law in integral
form and the symmetry of the problem to solve for the magnetic field.

Exercises for 1.6 Polarization of Materials

P1.4 Check that the E and B fields in P1.2 satisfy the rest of Maxwell’s equa-
tions:

(a) (1.1). What must ρ be?

(b) (1.2).

(c) (1.4). What must J be?
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P1.5 Memorize Maxwell’s equations (1.33)–(1.36). Be prepared to reproduce
them from memory on an exam, and write them on your homework
from memory to indicate completion. Also very briefly summarize the
physical principles described by each of Maxwell’s equations, and the
approximations made to (1.28) and (1.30).

Exercises for 1.7 The Wave Equation

P1.6 Derive the wave equation for the magnetic field B in vacuum (i.e. J = 0
and ρ = 0).

P1.7 Show that the magnetic field in P1.2 is consistent with the wave equa-
tion derived in P1.6. What is the requirement on k and ω?

P1.8 Verify that E(û ·r−ct ) satisfies the vacuum wave equation (1.41), where
E has an arbitrary functional form.

P1.9 (a) Show that E (r, t ) = E0 cos
(
k(û · r− ct )+φ)

is a solution to the vac-
uum wave equation (1.41), where û is an arbitrary unit vector, c =
1
/p

ϵ0µ0 , and k is a constant with units of inverse length.

(b) Show that each wavefront forms a plane, which is why such solu-
tions are often called ‘plane waves’. HINT: A wavefront is a surface in
space where the argument of the cosine (i.e. the phase of the wave) has
a constant value. Set the cosine argument to an arbitrary constant and
see what positions are associated with that phase.

(c) Determine the speed v = ∆r /∆t that a wavefront moves in the û
direction. HINT: Set the cosine argument to a constant, and consider a
change in position along û with its associated change in time.

(d) By analysis of this wave, determine the wavelength λ in terms of
k. HINT: Holding time constant, find the distance between identical
wavefronts by changing the position along û and allowing the cosine
argument to evolve through 2π.

(e) Use (1.33) to show that E0 and û must be perpendicular to each
other in vacuum.

L1.10 Measure the speed of light using a rotating mirror. Provide an estimate
of the experimental uncertainty in your answer (not the percentage
error from the known value). (video)

Screen

Laser

Delay Path

Rotating
Mirror

A

B

C

D

Figure 1.10 Geometry for lab 1.10.

Figure 1.10 shows a simplified geometry for the optical path for light
in this experiment. Laser light from A reflects from a rotating mirror
at B towards C . The light returns to B , where the mirror has rotated,
sending the light to point D . Notice that a mirror rotation of θ deflects
the beam by 2θ.

https://vimeo.com/717097146
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Retro-reflecting
Collimation Telescope

Front of laser can
serve as screen
for returning light

Long CorridorRotating
mirror

Laser

Figure 1.11 A schematic of the setup for lab 1.10.

Ole Roemer (1644–1710, Danish) was
a man of many interests. In addition to
measuring the speed of light, he created
a temperature scale which with slight
modification became the Fahrenheit
scale, introduced a system of standard
weights and measures, and was heavily
involved in civic affairs (city planning,
etc.). Scientists initially became inter-
ested in Io’s orbit because its eclipse
(when it went behind Jupiter) was an
event that could be seen from many
places on earth. By comparing accurate
measurements of the local time when Io
was eclipsed by Jupiter at two remote
places on earth, scientists in the 1600s
were able to determine the longitude
difference between the two places.

P1.11 Ole Roemer made the first successful measurement of the speed of
light in 1676 by observing the orbital period of Io, a moon of Jupiter
with a period of 42.5 hours. When Earth is moving toward Jupiter,
the period is measured to be slightly less, owing to decreasing Jupiter-
Earth distance between successive Io orbits. When Earth is moving
away from Jupiter, the situation is reversed, and the period is measured
to be slightly longer.

(a) If you were to measure the time for 40 observed orbits of Io when
Earth is moving directly toward Jupiter and then later measure the
time for 40 observed orbits when Earth is moving directly away from
Jupiter, what would you expect the difference between these two mea-
surements to be? Take the Earth’s orbital radius to be 1.5×1011 m. To
simplify the geometry, just assume that Earth moves directly toward or
away from Jupiter over the entire 40 orbits (see Fig. 1.12).

Sun

Jupiter

Io

Earth

Earth

Figure 1.12 Geometry for P1.11

(b) Roemer did the experiment described in part (a), and experimen-
tally measured a 22 minute difference. What speed of light would one
deduce from that value?

P1.12 In an isotropic nonconducting medium (i.e. ∇·P = 0, Jfree = 0), the po-
larization under certain assumptions can be written as function of the
electric field: P = ϵ0χ (E)E, where χ (E) =χ1+χ2E+χ3E 2 · · · . The higher
order coefficients in the expansion (i.e. χ2, χ3, ...) are typically small, so
only the first term is important unless the field is very strong. Nonlinear
optics deals with the study of intense light-matter interactions, where
the higher-order terms in the expansion become important. This can
lead to phenomena such as harmonic generation.

Starting with (1.40), show that the wave equation becomes:

∇2E−µ0ϵ0

(
1+χ1

) ∂2E

∂t 2 =µ0ϵ0

∂2
(
χ2E +χ3E 2 +·· ·)E

∂t 2





Chapter 2

Plane Waves and Refractive Index

In this chapter, we study sinusoidal solutions of Maxwell’s equations, called plane
waves. Restricting our attention to plane waves may seem limiting at first, since
(as mentioned in chapter 1) an endless variety of waveform shapes can satisfy
the wave equation in vacuum. It turns out, however, that an arbitrary waveform
can always be constructed from a linear superposition of sinusoidal waves. Thus,
there is no loss of generality if we focus our attention on plane-wave solutions.

In a material, the electric field of a plane wave induces oscillating dipoles,
and these oscillating dipoles in turn alter the electric field. We use the index of
refraction to describe this effect. Plane waves of different frequencies experience
different refractive indices, which causes them to travel at different speeds in
materials. Thus, an arbitrary waveform, which is composed of multiple sinusoidal
waves, invariably changes shape as it travels in a material, as the different sinu-
soidal waves change relationship with respect to one another. This dispersion
phenomenon is a primary reason why physicists and engineers choose to work
with sinusoidal waves. Every waveform except for individual sinusoidal waves
changes shape as it travels in a material.

When describing plane waves, it is convenient to employ complex numbers
to represent physical quantities. This is particularly true for problems involving
absorption, which takes place in metals and, to a lesser degree (usually), in
dielectric material (e.g. glass). When the electric field is represented using complex
notation, the index of refraction also becomes a complex number. You should
make sure you are comfortable with the material in section 0.2 before proceeding.

2.1 Plane Wave Solutions to the Wave Equation

Consider the wave equation for an electric field waveform propagating in vacuum
(1.41):

∇2E−µ0ϵ0
∂2E

∂t 2 = 0 (2.1)

We are interested in solutions to (2.1) that have the functional form (see P1.9)

E(r, t ) = E0 cos
(
k · r−ωt +φ)

(2.2)

43
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Here φ represents an arbitrary (constant) phase term. The vector k, called the
wave vector, may be written as

k ≡ kû = 2π

λvac
û (vacuum) (2.3)

where k has units of inverse length, û is a unit vector defining the direction of
propagation, and λvac is the length by which r must vary (in the direction of û) to
cause the cosine to go through a complete cycle. This distance is known as the
(vacuum) wavelength. The frequency of oscillation is related to the wavelength via

ω= 2πc

λvac
(vacuum) (2.4)

The frequency ω has units of radians per second. Frequency is also often ex-
pressed as ν ≡ ω/2π in units of cycles per second or Hz. Notice that k and ω

cannot be chosen independently; the wave equation requires them to be related
through the dispersion relation

k = ω

c
(vacuum) (2.5)

Typical values for λvac are given in Fig. 2.1. Sometimes the spatial period of the
wave is expressed as 1/λvac, in units of cm−1, called the wave number.
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Figure 2.1 The electromagnetic
spectrum

A magnetic wave accompanies any electric wave, and it obeys a similar wave
equation (see P1.6). The magnetic wave corresponding to (2.2) is

B(r, t ) = B0 cos
(
k · r−ωt +φ)

, (2.6)

It is important to note that B0, k, ω, and φ are not independently chosen in (2.6).
In order to satisfy Faraday’s law (1.3), the arguments of the cosine in (2.2) and
(2.6) must be identical. Therefore, in vacuum the electric and magnetic fields
travel in phase. In addition, Faraday’s law requires (see P1.2)

B0 = k×E0

ω
(2.7)

The above cross product means that B0, is perpendicular to both E0 and k. Mean-
while, Gauss’ law ∇·E = 0 forces k to be perpendicular to E0. It follows that the
magnitudes of the fields are related through B0 = kE0/ω or B0 = E0/c, in view of
(2.5).

The influence of the magnetic field only becomes important (in comparison
to the electric field) for charged particles moving near the speed of light. This
typically takes place only for extremely intense lasers (> 1018 W/cm2, see P2.12)
where the electric field is sufficiently strong to cause electrons to oscillate with
velocities near the speed of light. We will be interested in optics problems that take
place at far less intensity where the effects of the magnetic field can typically be
safely ignored. Throughout the remainder of this book, we will focus our attention
mainly on the electric field with the understanding that we can at any time deduce
the (less important) magnetic field from the electric field via Faraday’s law.
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Figure 2.2 depicts the electric field (2.2) and the associated magnetic field (2.6).
The figure is deceptive since the fields don’t actually look like transverse waves on
a string. The wave is comprised of large planar sheets of uniform field strength
(difficult to draw). The name plane wave is given since a constant argument in
(2.2) at any moment describes a plane, which is perpendicular to k. A plane wave
fills all space and may be thought of as a series of infinite sheets, each with a
different uniform field strength, moving in the k direction.

Figure 2.2 Depiction of electric
and magnetic fields associated
with a plane wave.

2.2 Complex Plane Waves

At this point, let’s rewrite our plane wave solution using complex number notation.
Although this change in notation will not make the task at hand any easier (and
may even appear to complicate things), we introduce the complex notation here
in preparation for later sections, where it will save considerable labor. (For a
review of complex notation, see section 0.2.)

Using complex notation we rewrite (2.2) as

E(r, t ) = Re
{

Ẽ0e i (k·r−ωt )
}

(2.8)

where we have hidden the phase term φ inside of Ẽ0 as follows:1

Ẽ0 ≡ E0e iφ (2.9)

The next step we take is to become intentionally sloppy. Physicists throughout
the world have conspired to avoid writing Re{ } in an effort (or lack thereof if
you prefer) to make expressions less cluttered. Nevertheless, only the real part of
the field is physically relevant even though expressions and calculations contain
both real and imaginary terms. This sloppy notation is okay since the real and
imaginary parts of complex numbers never intermingle when adding, subtracting,
differentiating, or integrating. We can delay taking the real part of the expression
until the end of the calculation. Also, when hiding a phase φ inside of the field
amplitude as in (2.8), we drop the tilde (might as well since we are already being
sloppy); we will automatically assume that the field amplitude is complex and
contains phase information. Putting this all together, our plane wave solution in
complex notation is written simply as

E(r, t ) = E0e i (k·r−ωt ) (2.10)

It is possible to construct any electromagnetic disturbance from a linear superpo-
sition of such waves, which we will do in chapter 7.

1We have assumed that each vector component of the field propagates with the same phase. To
be more general, one could write Ẽ0 ≡ x̂E0xeiφx + ŷE0yeiφy + ẑE0zeiφz .
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Example 2.1

Verify that the complex plane wave (2.10) is a solution to the wave equation (2.1).

Solution: The first term gives

∇2E0e i (k·r−ωt ) = E0

[
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

]
e i(kx x+ky y+kz z−ωt)

=−E0

(
k2

x +k2
y +k2

z

)
e i (k·r−ωt )

=−k2E0e i (k·r−ωt )

(2.11)

and the second term gives

1

c2

∂2

∂t 2

(
E0e i (k·r−ωt )

)
=−ω

2

c2 E0e i (k·r−ωt ) (2.12)

Upon insertion into (2.1) we obtain the vacuum dispersion relation (2.5), which
specifies the connection between the wavenumber k and the frequency ω.

2.3 Index of Refraction

Now let’s examine how plane waves behave in dielectric media (e.g. glass) where
electrons are tightly bound to parent atoms or molecules and not free to move
about in the material. We assume an isotropic,2 homogeneous,3 and nonconduct-
ing medium (i.e. Jfree = 0). In this case, we expect E and P to be parallel to each
other so ∇·P = 0 from (1.33).4 The general wave equation (1.40) for the electric
field reduces in this case to

∇2E−ϵ0µ0
∂2E

∂t 2 =µ0
∂2P

∂t 2 (2.13)

Since we are considering sinusoidal waves, we consider solutions of the form

E = E0e i (k·r−ωt )

P = P0e i (k·r−ωt )
(2.14)

By writing this, we are making the (reasonable) assumption that if an electric
field stimulates a medium at frequency ω, then the polarization in the medium
also oscillates at frequency ω. This assumption is typically rather good except
for extreme electric fields, which can generate frequency harmonics through
nonlinear effects (see P1.12). Recall that by our prior agreement, the complex
amplitudes of E0 and P0 carry phase information. Thus, while E and P in (2.14)

2Isotropic means the material behaves the same for propagation in any direction. Many crystals
are not isotropic as we’ll see in Chapter 5.

3Homogeneous means the material is everywhere the same throughout space.
4This follows for a wave of the form (2.14) if P and k are perpendicular.
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oscillate at the same frequency, they can be out of phase with respect to each
other. This phase discrepancy is most pronounced for materials that absorb
energy at the plane wave frequency.

Substitution of the trial solutions (2.14) into (2.13) yields

−k2E0e i (k·r−ωt ) +ϵ0µ0ω
2E0e i (k·r−ωt ) =−µ0ω

2P0e i (k·r−ωt ) (2.15)

To go further, we need to make an explicit connection between E0 and P0 (exter-
nal to Maxwell’s equations). In a linear medium, the polarization amplitude is
proportional to the strength of the applied electric field:

P0 (ω) = ϵ0χ (ω)E0 (ω) (2.16)

This is known as a constitutive relation. We have introduced a (to-be-determined)
dimensionless proportionality factorχ(ω) called the susceptibility. We account for
the possibility that E and P oscillate out of phase by allowing χ(ω) to be a complex
number. Since χ(ω) in general depends on the frequency, we appropriately must
think of P0 and E0 also as functions of ω.

By inserting (2.16) into (2.15) and canceling the field terms, we obtain the
dispersion relation in dielectrics:

k2 = ϵ0µ0

[
1+χ (ω)

]
ω2 or k = ω

c

√
1+χ (ω) (2.17)

where we have used c ≡ 1/
p
ϵ0µ0. The oft-used combination ϵ≡ ϵ0(1+χ) is called

the permittivity of the material5; we will stick with writing out 1+χ. In general,
χ(ω) is a complex number, which leads to a complex index of refraction, defined
by

N (ω) ≡ n(ω)+ iκ(ω) =√
1+χ(ω) (2.18)

where n and κ are respectively the real and imaginary parts of the index. (Note
that κ is not k.) According to (2.17), the magnitude of the wave vector is also
complex according to

k = N ω

c
= (n + iκ)ω

c
(2.19)

Please keep in mind that the use of a complex index of refraction only makes
sense in the context of complex representation for a plane wave.

The complex index N takes into account absorption as well as the usual
oscillatory behavior of the wave. We see this by explicitly placing (2.19) into
(2.14):

E(r, t ) = E0e i (kû·r−ωt ) = E0e−
κω
c û·re i

(
nω
c û·r−ωt

)
(2.20)

5Electrodynamics books often use the electric displacement D ≡ ϵ0E+P = ϵE. See M. Born and
E. Wolf, Principles of Optics, 7th ed., p. 3 (Cambridge University Press, 1999). The permittivity ϵ
encapsulates the constitutive relation that connects P with E.The index of refraction is given by
N =p

ϵ/ϵ0.
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As before, û is a real unit vector specifying the direction of k. Again, when looking
at (2.20), by special agreement in advance, we should just think of the real part,
namely

E(r, t ) = E0e−
κω
c û·r cos

(nω

c
û · r−ωt +φ

)
(2.21)

where an overall phase φ was formerly held in the complex vector Ẽ0.6 (The tilde
had been suppressed.) Figure 2.3 shows a graph of (2.21). The imaginary part of
the complex index (i.e. κ) describes how the wave to decays as it travels. This
accounts for absorption. The real part of the complex index (i.e. n) is associated
with the oscillations of the wave. By inspection of the cosine argument in (2.21),
we see that the speed of the (diminishing) sinusoidal wavefronts is

vphase(ω) = c /n(ω) (2.22)

so we have n(ω) = c/vphase(ω). Thus, n(ω) is the ratio of the speed of the light in
vacuum to the speed of the wave in the material.

0 10 20

0

Figure 2.3 Electric field of a decay-
ing plane wave. For convenience
in plotting, the direction of prop-
agation is chosen to be in the z
direction (i.e. û = ẑ).

In a dielectric material, the vacuum relations (2.3) and (2.4) are modified to
read

Re{k} ≡ 2π

λ
û, (2.23)

where
λ≡λvac/n. (2.24)

While the frequency ω is the same, whether in a material or in vacuum, the
wavelength λ varies with the real part of the complex index.

Example 2.2

When n = 1.5, κ = 0.1, and ν = 5× 1014 Hz, find (a) the wavelength inside the
material, and (b) the propagation distance over which the amplitude of the wave
diminishes by the factor e−1 (called the skin depth).

Solution:

(a)

λ= λvac

n
= 2πc

nω
= c

nν
=

(
3×108 m/s

)
1.5

(
5×1014 Hz

) = 400 nm

(b)

e−
κω
c z = e−1 ⇒ z = c

κω
= c

2πκν
= 3×108 m/s

2π (0.1)
(
5×1014 Hz

) = 950 nm

6For the sake of simplicity in writing (2.21) we assume linearly polarized light. That is, all vector
components of Ẽ0 have the same complex phase φ. We will consider other possibilities, such as
circularly polarized light, in chapter 6.
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Obtaining n and κ from the complex susceptibility χ

From (2.18) we have

(n + iκ)2 = n2 −κ2 + i 2nκ= 1+Re
{
χ
}+ i Im

{
χ
}= 1+χ (2.25)

The real parts and the imaginary parts in the above equation are separately equal:

n2 −κ2 = 1+Re
{
χ
}

and 2nκ= Im
{
χ
}

(2.26)

From the latter equation we have

κ= Im
{
χ
}

/2n (2.27)

When this is substituted into the first equation of (2.26) we get a quadratic in n2

n4 − (
1+Re

{
χ
})

n2 −
(
Im

{
χ
})2

4
= 0 (2.28)

The positive7 real root to this equation is

n =

√√√√(
1+Re

{
χ
})+√(

1+Re
{
χ
})2 + (

Im
{
χ
})2

2
(2.29)

The imaginary part of the index is then obtained from (2.27).

When absorption is small we can neglect the imaginary part of χ(ω), and
(2.29) reduces to

n (ω) =
√

1+χ (ω) (negligible absorption) (2.30) Hendrik Antoon Lorentz (1853–1928,
Dutch) was born in Arnhem, Nether-
lands, the son of a successful nursery-
man. Hendrik’s mother died when he
was four years old. He studied classical
languages and then entered the Uni-
versity of Leiden where he was strongly
influenced by astronomy professor Fred-
erik Kaiser, whose niece Hendrik mar-
ried. Hendrik was persuaded to become
a physicist and wrote a doctoral disserta-
tion entitled “On the theory of reflection
and refraction of light,” in which he re-
fined Maxwell’s electromagnetic theory.
Lorentz correctly hypothesized that the
atoms were composed of charged par-
ticles, and that their movement was
the source of light. He also derived the
transformations of space and time, later
used in Einstein’s theory of relativity.
Lorentz won the Nobel prize in 1902
for his contributions to electromagnetic
theory. (Wikipedia)

2.4 The Lorentz Model of Dielectrics

To compute the index of refraction in either a dielectric or a conducting material,
we require a model that describes the response of electrons in the material to
the passing electric field wave. Of course, the model in turn influences how the
electric field propagates, which is what influences the material in the first place!
The model therefore must be solved together with the propagating field in a
self-consistent manner.

Hendrik Lorentz developed a very successful model in the late 1800s, which
treats each (active) electron in the medium as a classical particle obeying Newton’s
second law (F = ma). In the case of a dielectric medium, electrons are subject to
an elastic restoring force that keeps each electron bound to its respective molecule
and a damping force that dissipates energy and gives rise to absorption.

7It is possible to have n < 0 for so called meta materials, not considered here.

https://en.wikipedia.org/wiki/Hendrik_Lorentz
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The Lorentz model determines the susceptibility χ (ω) (the connection be-
tween the electric field E0 and the polarization P0) and hence the index of refrac-
tion. The model assumes that all molecules in the medium are identical, each
with one (or a few) active electrons responding to the external field. The atoms
are uniformly distributed throughout space with N identical active electrons per
volume (units: number per volume). The polarization of the material is then

P = N qe re (2.31)

Recall that polarization has units of dipoles per volume. Each dipole has strength
qe re , where re is a microscopic displacement of the electron from equilibrium.

At the time of Lorentz, atoms were thought to be clouds of positive charge
wherein point-like electrons sat at rest unless stimulated by an applied electric
field. In our modern quantum-mechanical viewpoint, re corresponds to an av-
erage displacement of the electronic cloud, which surrounds the nucleus (see
Fig. 2.4). The displacement re of the electron charge in an individual atom de-
pends on the local strength of the applied electric field E at the position of the
atom. Since the diameter of the electronic cloud is tiny compared to a wavelength
of (visible) light, we make the approximation that the electric field is uniform
across any individual atom.

+

Unperturbed

+-

In an electric field

Figure 2.4 A distorted electronic
cloud becomes a dipole.

The Lorentz model uses Newton’s equation of motion to describe an electron
displacement from equilibrium within an atom. In accordance with the classical
laws of motion, the electron mass me times its acceleration is equal to the sum of
the forces on the electron:

me r̈e = qe E−meγṙe −kHookere (2.32)

The electric field pulls on the electron with force qe E.8 A drag force (or friction)
−meγṙe opposes the electron motion and accounts for absorption of energy.
Without this term, it is only possible to describe optical index at frequencies away
from where absorption takes place. Finally, −kHookere is a force accounting for
the fact that the electron is bound to the nucleus. This restoring force can be
thought of as an effective spring that pulls the displaced electron back towards
equilibrium with a force proportional to the amount of displacement, so this
term is essentially the familiar Hooke’s law. With some rearranging, (2.32) can be
written as

r̈e +γṙe +ω2
0 re = qe

me
E (2.33)

where ω0 ≡ √
kHooke/me is the natural oscillation frequency (or resonant fre-

quency) associated with the electron mass and the ‘spring constant.’
There is a subtle problem with our analysis, which we will continue to neglect,

but which should be mentioned. The field E in (2.32) is the net field, which is
influenced by the presence of all of the dipoles. The actual field that a dipole

8The electron also experiences a force due to the magnetic field of the light, F = qe ve ×B, but
this force is tiny for typical optical fields.
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‘feels’, however, does not include its own field. That is, we should remove from E
the field produced by each dipole in its own vicinity. This significantly modifies
the result if the density of the material is sufficiently high. This effect is described
by the Clausius-Mossotti formula, which is treated in appendix 2.B.

In accordance with our examination of a single sinusoidal wave, we insert
(2.14) into (2.33) and obtain

r̈e +γṙe +ω2
0 re = qe

me
E0e i (k·r−ωt ) (2.34)

As a reminder, within a given atom the excursions of re are assumed to be so small
that k · r remains essentially constant. After all, k · r varies typically on a scale
of an optical wavelength, which is huge compared to the size of an atom. The
inhomogeneous solution to (2.34) is (see P2.1)

re =
(

qe

me

)
E0e i (k·r−ωt )

ω2
0 − iωγ−ω2

(2.35)

The electron position re oscillates (not surprisingly) with the same frequencyω as
the driving electric field. This solution illustrates the convenience of complex no-
tation. The imaginary part in the denominator implies that the electron oscillates
with a phase different from the electric field oscillations; the damping term γ (the
imaginary part in the denominator) causes the two to be out of phase somewhat.
The complex algebra in (2.35) accomplishes quite easily what would otherwise be
cumbersome (i.e. working out a trigonometric phase).

90 95 100 105 110

1

0

Figure 2.5 Real and imaginary
parts of the index for a single
Lorentz oscillator dielectric with
ωp = 10γ and ω0 = 100γ.

We are now able to write the polarization in terms of the electric field. By
substituting (2.35) into (2.31) and rearranging, we obtain

P = ϵ0

(
ω2

p

ω2
0 − iωγ−ω2

)
E0e i (k·r−ωt ) (2.36)

where the plasma frequency ωp has been introduced:9

ωp ≡
√

N q2
e

ϵ0me
(2.37)

A comparison of (2.36) with (2.16) reveals the (complex) susceptibility:

χ (ω) =
ω2

p

ω2
0 − iωγ−ω2

(2.38)

The index of refraction is then found by substituting the susceptibility (2.38) into
(2.18). The real and imaginary parts of the index are solved by equating separately
the real and imaginary parts of (2.18), namely

(n + iκ)2 = 1+χ (ω) = 1+
ω2

p

ω2
0 − iωγ−ω2

(2.39)
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Graphs of n and κ are given in Figs. 2.5 and 2.6 for various parameters.

0 10 20 30 40

1

Figure 2.6 Real and imaginary
parts of the index for a single
Lorentz oscillator dielectric with
ωp = 10γ and ω0 = 20γ.

Most materials actually have more than one species of active electron, and
different active electrons behave differently. The generalization of (2.39) in this
case is

(n + iκ)2 = 1+χ (ω) = 1+∑
j

f jω
2
p j

ω2
0 j − iωγ j −ω2

(2.40)

where f j is the aptly named the oscillator strength for the j th species of active
electron, inserted into the model without justification to make results better agree
with observation. Each species also has its own plasma frequency ωp j , natural
frequency ω0 j , and damping coefficient γ j . For frequency ranges where ωγ j and
κ can be ignored (i.e. away from resonances ω0 j ), it is common to write Lorentz’s
refractive-index formula (2.40) in terms of λvac = 2πc/ω, in which case it is known
as the Sellmeier equation. (See P2.2.)

Lorentz introduced this model well before the development of quantum
mechanics. Even though the model pays no attention to quantum physics, it
works surprisingly well for describing frequency-dependent optical indices and
absorption of light. As it turns out, the Schrödinger equation applied to two levels
in an atom reduces in mathematical form to the Lorentz model in the limit of
low-intensity light. Quantum mechanics also explains the oscillator strength,
which before the development of quantum mechanics had to be inserted ad hoc
to make the model agree with experiments. The friction term γ turns out not to be
associated with something internal to atoms but rather with collisions between
atoms, which on average give rise to the same behavior.

2.5 Index of Refraction of a Conductor

In a conducting medium, the outer electrons of atoms are free to move without
being tethered to any particular atom. However, the electrons are still subject to a
damping force due to collisions that remove energy and give rise to absorption.
Such collisions are associated with resistance in a conductor. As it turns out,
we can obtain a simple formula for the refractive index of a conductor from the
Lorentz model in section 2.4. We simply remove the restoring force that binds
electrons to their atoms. That is, we set ω0 = 0 in (2.39), which gives

(n + iκ)2 = 1−
ω2

p

iωγ+ω2 (2.41)

This underscores the fact that ∂P/∂t is a current very much like Jfree. When
we remove the restoring force kHooke = meω

2
0 from the atomic model, the elec-

trons effectively become free, and it is not surprising that they exactly mimic the
behavior of a free current Jfree. A graph of n and κ in the conductor model is given

9In a plasma, charges move freely so that both the Hooke restoring force and the damping term
can be neglected (i.e. ω0

∼= 0, γ∼= 0). For a plasma, ωp is the dominant parameter.
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in Fig. 2.7. Below, we provide the derivation for (2.41) in the context of Jfree rather
than as a limiting case of the dielectric model.10

-20 0 20 40
0

1

Figure 2.7 Real and imaginary
parts of the index for conductor
with ωp = 50γ.

Derivation of Refractive Index for a Conductor

We will include the current density Jfree while setting the medium polarization P to
zero. The wave equation (1.40) then becomes

∇2E−ϵ0µ0

∂2

∂t 2 E =µ0

∂

∂t
Jfree (2.42)

We assume that the current is made up of individual electrons traveling with
velocity ve :

Jfree = N qeve (2.43)

As before, N is the number density of free electrons (in units of number per vol-
ume). Recall that current density Jfree has units of charge times velocity per volume
(or current per cross sectional area), so (2.43) may be thought of as a definition of
current density in a fundamental sense.

Again, the electrons satisfy Newton’s equation of motion, similar to (2.32) except
without a restoring force:

me r̈e = qe E−meγṙe (2.44)

For a sinusoidal electric field E = E0e i (k·r−ωt ), the solution to this equation is

ve ≡ ṙe =
(

qe

me

)
E0e i (k·r−ωt )

γ− iω
(2.45)

where again we assume that the electron oscillation excursions described by re are
small compared to the wavelength so that r can be treated as a constant in (2.44).
The current density (2.43) in terms of the electric field is then

Jfree =
(

N q2
e

me

)
E0e i (k·r−ωt )

γ− iω
(2.46)

We substitute this together with the electric field into the wave equation (2.42) and
get

−k2E0e i (k·r−ωt ) + ω2

c2 E0e i (k·r−ωt ) =−iω

(
µ0N q2

e

me

)
E0e i (k·r−ωt )

γ− iω
(2.47)

This simplifies down to the dispersion relation

k2 = ω2

c2

(
1−

ω2
p

iγω+ω2

)
(2.48)

which agrees with (2.41). We have made the substitution ω2
p = N q2

e /ϵ0me in accor-

dance with (2.37). As usual, k2 = ω2(1+χ)
c2 = ω2(n+iκ)2

c2 , so the susceptibility and the
index may be extracted from (2.48).
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Figure 2.8 The electrons in a
conductor can easily move in re-
sponse to the applied field.

Note that in the low-frequency limit (i.e. ω≪ γ), the current density (2.46)
reduces to Ohm’s law J = σE, where σ = N q2

e /meγ is the DC conductivity. In
the high-frequency limit (i.e. ω ≫ γ), the behavior changes over to that of a
free plasma, where collisions, which are responsible for resistance, become less
important since the excursions of the electrons during oscillations become very
small. This formula captures the general behavior of metals, but actual values of
the index vary from this somewhat (see P2.6 ).

In either the conductor or dielectric model, the damping term removes energy
from electron oscillations. The damping term gives rise to an imaginary part
of the index, which causes an exponential attenuation of the plane wave as it
propagates.

2.6 Poynting’s Theorem

Until now, we have described light as the propagation of an electromagnetic
disturbance. However, we typically observe light by detecting absorbed energy
rather than the field amplitude directly. In this section we examine the connection
between propagating electromagnetic fields (such as the plane waves discussed
in this chapter) and the energy transported by such fields.

In the late 1800s John Poynting developed (from Maxwell’s equations) the the-
oretical foundation that describes light energy transport. You should appreciate
and remember the ideas involved, especially the definition and meaning of the
Poynting vector, even if you forget the specifics of its derivation.

John Henry Poynting (1852–1914, En-
glish) was the youngest son of a Unitar-
ian minister who operated a school near
Manchester, England where John re-
ceived his childhood education. He later
attended Owen’s College in Manchester
and then went on to Cambridge Univer-
sity where he distinguished himself in
mathematics and worked under James
Maxwell in the Cavendish Laboratory.
Poynting joined the faculty of the Univer-
sity of Birmingham (then called Mason
Science College) where he was a profes-
sor of physics from 1880 until his death.
Besides developing his famous theorem
on the conservation of energy in electro-
magnetic fields, he performed innovative
measurements of Newton’s gravitational
constant and discovered that the Sun’s
radiation draws in small particles to-
wards it, the Poynting-Robertson effect.
Poynting was the principal author of a
multi-volume undergraduate physics
textbook, which was in wide use until the
1930s. (Wikipedia)

Derivation of Poynting’s Theorem

We require just two of Maxwell’s Equations: (1.3) and (1.4). We take the dot product
of B/µ0 with the first equation and the dot product of E with the second equation.
Then by subtracting the second equation from the first we obtain

B

µ0

· (∇×E)−E ·
(
∇× B

µ0

)
+ϵ0E · ∂E

∂t
+ B

µ0

· ∂B

∂t
=−E · J (2.49)

The first two terms can be simplified using the vector identity P0.8. The next two
terms are the time derivatives of ϵ0E 2/2 and B 2/2µ0, respectively. The relation
(2.49) then becomes

∇·
(

E× B

µ0

)
+ ∂

∂t

(
ϵ0E 2

2
+ B 2

2µ0

)
=−E · J (2.50)

This is Poynting’s theorem. Each term in this equation has units of power per
volume.

10G. Burns, Solid State Physics, Sect. 9-5 (Orlando: Academic Press, 1985).

https://en.wikipedia.org/wiki/John_Henry_Poynting
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It is conventional to write Poynting’s theorem as follows:11

∇·S+ ∂

∂t
(ufield +umedium) = 0 (2.51)

where

S ≡ E× B

µ0

(2.52)

is called the Poynting vector, which has units of power per area, called irradiance.
The expression

ufield ≡ ϵ0E 2

2
+ B 2

2µ0

(2.53)

is the energy per volume stored in the electric and magnetic fields. Derivations of
the electric field energy density and the magnetic field energy density are given in
Appendices 2.C and 2.D. (See (2.80) and (2.87).) The derivative

∂umedium

∂t
≡ E · J (2.54)

describes the power per volume delivered to the medium from the field. Equa-
tion (2.54) is reminiscent of the familiar circuit power law, Power = Voltage×
Current. Power is delivered when a charged particle traverses a distance while
experiencing a force. This happens when currents flow in the presence of electric
fields.

Poynting’s theorem is essentially a statement of the conservation of energy,
where S describes the flow of energy. To appreciate this, consider Poynting’s
theorem (2.51) integrated over a volume V (enclosed by surface S). If we also
apply the divergence theorem (0.11) to the term involving ∇·S we obtain∮

S

S · n̂ d a =− ∂

∂t

∫
V

(ufield +umedium)d v (2.55)

Notice that the volume integral over energy densities ufield and umedium gives
the total energy stored in V , whether in the form of electromagnetic field energy
density or as energy density that has been given to the medium. The integration
of the Poynting vector over the surface gives the net Poynting vector flux directed
outward. Equation (2.55) indicates that the outward Poynting vector flux matches
the rate that total energy disappears from the interior of V . Conversely, if the
Poynting vector is directed inward (negative), then the net inward flux matches
the rate that energy increases within V . The vector S defines the flow of energy
through space. Its units of power per area are just what is needed to describe the
brightness of light impinging on a surface.

11See D. J. Griffiths, Introduction to Electrodynamics, 3rd ed., Sect. 8.1.2 (New Jersey: Prentice-Hall,
1999).
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Example 2.3

(a) Find the Poynting vector S and energy density ufield for the plane wave field E =
x̂E0 cos(kz −ωt ) traveling in vacuum. (b) Check that S and ufield satisfy Poynting’s
theorem.

Solution: The associated magnetic field is (see P1.2)

B = ẑk × x̂E0

ω
cos(kz −ωt ) = ŷ

kE0

ω
cos(kz −ωt )

(a) The Poynting vector is

S = E×B

µ0

= x̂E0 cos(kz −ωt )× ŷ
kE0

ωµ0

cos(kz −ωt )

= ẑcϵ0E 2
0 cos2 (kz −ωt )

where we have used ω= kc and µ0 = 1/(c2ϵ0). The energy density is

ufield = ϵ0E 2

2
+ B 2

2µ0

= ϵ0E 2
0

2
cos2 (kz −ωt )+ k2E 2

0

2µ0ω2 cos2 (kz −ωt )

= ϵ0E 2
0 cos2 (kz −ωt )

Notice that S = cu. The energy density traveling at speed c gives rise to the power
per area passing a surface (perpendicular to z).

(b) We have

∇·S = cϵ0E 2
0

∂

∂z
cos2 (kz −ωt ) =−2kcϵ0E 2

0 cos(kz −ωt )sin(kz −ωt )

whereas

∂ufield

∂t
= ϵ0E 2

0

∂

∂t
cos2 (kz −ωt ) = 2ωϵ0E 2

0 cos(kz −ωt )sin(kz −ωt )

Poynting’s theorem (2.50) is satisfied since ω= kc.

It is common to replace the rapidly oscillating function cos2 (kz −ωt ) with its time
average 1/2, but this would have inhibited our ability to take the above derivatives
needed in this specific problem.

2.7 Irradiance of a Plane Wave

In this section, we consider the irradiance of a plane wave while propagating
in matter. We start with the electric plane-wave field E(r, t) = E0e i (k·r−ωt ). The
magnetic field that accompanies this electric field can be found from Maxwell’s
equation (1.3), and it turns out to be (compare with problem P1.2)

B(r, t ) = k×E0

ω
e i (k·r−ωt ) (2.56)
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When k is complex, B is out of phase with E, and this occurs when absorption
takes place. On the other hand, when there is no absorption, then k is real, and B
and E carry the same complex phase.

Before computing the Poynting vector (2.52), which involves multiplication,
we must remember our unspoken agreement that only the real parts of the fields
are relevant. We necessarily remove the imaginary parts before multiplying (see
(0.22)). To obtain the real parts of the fields, we add their respective complex
conjugates and divide the result by 2 (see (0.30)). The real field associated with
the plane-wave electric field is

E(r, t ) = 1

2

[
E0e i (k·r−ωt ) +E∗

0 e−i (k∗·r−ωt )
]

(2.57)

and the real field associated with (2.56) is

B(r, t ) = 1

2

[
k×E0

ω
e i (k·r−ωt ) + k∗×E∗

0

ω
e−i (k∗·r−ωt )

]
(2.58)

Now we are ready to calculate the Poynting vector. The algebra is a little messy
in general, so we restrict the analysis to the case of an isotropic medium for the
sake of simplicity.

Calculation of the Poynting Vector for a Plane Wave

Using (2.57) and (2.58) in (2.52) gives

S ≡ E× B

µ0

= 1

2

[
E0e i (k·r−ωt ) +E∗

0 e−i(k∗·r−ωt)
]
× 1

2µ0

[
k×E0

ω
e i (k·r−ωt ) + k∗×E∗

0

ω
e−i(k∗·r−ωt)

]

= 1

4µ0

[
E0×(k×E0)

ω e2i (k·r−ωt ) + E∗
0×(k×E0)

ω e i(k−k∗)·r

+E0×
(
k∗×E∗

0

)
ω e i(k−k∗)·r + E∗

0×
(
k∗×E∗

0

)
ω e−2i(k∗·r−ωt)

]
(2.59)

Very often, we are interested in the time-average of the Poynting vector, denoted
by 〈S〉t , since there are no electronics that can keep up with the rapid oscillation of
visible light (i.e. > 1014 Hz). The first and last terms in (2.59) rapidly oscillate and
vanish under time averaging.

Additionally, we can use the BAC-CAB rule P0.3 to write E∗
0 × (k×E0) = k

(
E∗

0 ·E0

)
and similarly E0×

(
k∗×E∗

0

)= k∗ (
E0 ·E∗

0

)
, where we have employed k ·E0 = 0, which

follows from ∇·E = 0 in an isotropic medium (i.e. not a crystal). The time-averaged
Poynting vector then reduces to

〈S〉t =
k+k∗

4µ0ω

(
E0 ·E∗

0

)
e i(k−k∗)·r (isotropic medium) (2.60)

We can further simplify this expression using k = û (n + iκ)ω/c (see (2.19)). We can
also use (1.42) to rewrite 1/µ0c as ϵ0c, in which case (2.60) becomes
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〈S〉t = û
nϵ0c

2

(
E0 ·E∗

0

)
e−2 κω

c û·r (isotropic medium) (2.61)

This expression shows that (in an isotropic medium) the flow of energy is in the
direction of û (or k). This agrees with our intuition that energy flows in the direction
that the wave propagates.

The magnitude of expression (2.61) is the irradiance. However, we often refer
to it as the intensity of a field I , which amounts to the same thing, but without
regard for the flow of energy. The definition of intensity is thus less specific, and
it can be applied, for example, to standing waves where the net Poynting flux of
counter-propagating plane waves is technically zero since the two plane waves
have equal amounts of energy, but propagate in opposite directions. Nevertheless,
atoms in standing waves ‘feel’ the oscillating field, and we ascribe an intensity to
it.

In general, the intensity is written as

I = nϵ0c

2
E0 ·E∗

0 = nϵ0c

2

(
|E0x |2 +

∣∣E0 y

∣∣2 +|E0z |2
)

(2.62)

where in this case we have ignored absorption (i.e. κ ≈ 0). Alternatively, we
could consider |E0x |2,

∣∣E0 y

∣∣2, and |E0z |2 to include the factor exp(−2(κω/c)û · r)
so that they correspond to the local electric field. Equation (2.62) agrees with S in
Example 2.3 where n = 1 and E0 = x̂E0 is real; the cosine squared averages to 1/2.

Appendix 2.A Radiometry, Photometry, and Color

Radiant Power (of a source): Elec-
tromagnetic energy per unit time.
Units: W = J/s

Radiant Solid-Angle Intensity
(of a source): Radiant power per
steradian emitted from a point-
like source (4π steradians in a
sphere). Units: W/Sr

Radiance or Brightness (of a
source): Radiant solid-angle in-
tensity per unit projected area of
an extended source. The projected
area foreshortens by cosθ, where
θ is the observation angle rela-
tive to the surface normal. Units:
W/(Sr ·cm2)

Radiant Emittance or Exitance
(from a source): Radiant Power
emitted per unit surface area of an
extended source (the Poynting flux
leaving). Units: W/cm2

Irradiance (to a receiver), often
called intensity: Electromagnetic
power delivered per area to a
receiver: Poynting flux arriving.
Units: W/cm2

Table 2.1 Radiometric quantities
and units.

Radiometry

The field of study that quantifies the energy in electromagnetic radiation (in-
cluding visible light) is referred to as radiometry. Table 2.1 lists several concepts
important in radiometry. The radiance at a detector and the exitance from a
source are both direct measurements of the average Poynting flux, and the other
quantities in the table are directly related to the Poynting flux through geometric
factors. One of the challenges in radiometry is that light sensors always have a
wavelength-dependent sensitivity to light, whereas the quantities in Table 2.1
treat light of all wavelengths on equal footing. Disentangling the detector re-
sponse from the desired signal in a radiometric measurement takes considerable
care.

Photometry

Photometry refers to the characterization of light energy in the context of the
response of the human eye. In contrast to radiometry, photometry takes great care
to mimic the wavelength-dependent effects of the eye-brain detection system so
that photometric quantities are an accurate reflection of our everyday experience
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with light. The concepts used in photometry are similar to those in radiometry,
except that the radiometric quantities are multiplied by the spectral response of
our eye-brain system.

Our eyes contain two types of photoreceptors—rods and cones. The rods
are very sensitive and provide virtually all of our vision in dim light conditions.
Under these conditions we experience scotopic vision, with a response curve that
peaks at λvac = 507 nm and is insensitive to wavelengths longer than 640 nm12

(see Fig. 2.9). As the light gets brighter the less-sensitive cones take over, and we
experience photopic vision, with a response curve that peaks at λvac = 555 nm
and drops to near zero for wavelengths longer than λvac = 700 nm or shorter
than λvac = 400 nm (see Fig. 2.9). Photometric quantities are usually measured
using the bright-light (photopic) response curve since that is what we typically
experience in normally lit spaces.

Photopic
683 lm/W @555 nm

Scotopic
1700 lm/W @507 nm

wavelength (nm)

500

1000

1500

2000

400 500 600 700 800
0

Figure 2.9 The response of a “stan-
dard” human eye under relatively
bright conditions (photopic) and
in dim conditions (scotopic).

The basic unit of luminous power is called the lumen, defined to be (1/683) W
of light with wavelength λvac = 555 nm, the peak of the eye’s bright-light response.
At other wavelengths, additional radiant power is required to achieve the same
number of lumens, as plotted in Fig. 2.9. Photometric units were first defined by
comparing sources to burning candles with prescribed dimensions made from
whale tallow. Today, the procedure for measuring luminous power is essentially
to measure the radiometric power spectrum I (λ), and then calculate

Lumens =
∫

R(λ)I (λ)dλ (2.63)

where R(λ) is the photopic photometric response function plotted in Fig. 2.9.
Photometric units are often used to characterize room lighting as well as

photographic, projection, and display equipment. For example, both a 60 W
incandescent bulb and a 13 W compact fluorescent bulb emit about 800 lumens
of light, while their radiometric output is much closer to their power rating.
The difference in photometric output versus radiometric output reflects the fact
that most of the energy radiated from an incandescent bulb is emitted in the
infrared, where our eyes are not sensitive. Table 2.2 gives the names of the various
photometric quantities, which parallel the entries for radiometric quantities in
Table 2.1.

Luminous Power (of a source):
Visible light energy emitted per
time from a source. Units: lumens
(lm) lm=(1/683) W @ 555 nm

Luminous Solid-Angle Intensity
(of a source) Luminous power per
steradian emitted from a point-
like source. Units: candelas (cd),
cd = lm/Sr.

Luminance (of a source): Lumi-
nous solid-angle intensity per pro-
jected area of an extended source.
(The projected area foreshortens
by cosθ, where θ is the observa-
tion angle relative to the surface
normal.) Units: cd/cm2 = stilb,
cd/m2 = nit, nit = 3183 lambert =
3.4 footlambert

Luminous Emittance or Exitance
(from a source): Luminous Power
emitted per unit surface area of an
extended source. Units: lm/cm2

Illuminance (to a receiver): Inci-
dent luminous power delivered
per area to a receiver. Units: lux;
lm/m2 = lux, lm/cm2 = phot,
lm/ft2 = footcandle

Table 2.2 Photometric quantities
and units.

Color

In addition to brightness, our eye-brain measures some basic information about
the spectral content of light. We interpret this spectral information as the color
of the light. Color information arises from the cone receptors in the eye, which
come in three varieties, each sensitive to light in a different wavelength band.

12Since rods do not detect the longer red wavelengths, it is possible to have artificial red illumina-
tion without ruining your dark-adapted vision. For example, an airplane can have red illumination
on the instrument panel without interfering with a pilot’s ability to achieve full dark-adapted vision
to see things outside the cockpit.
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Figure 2.10 plots the normalized sensitivity curves13 for short (S), medium (M),
and long (L) wavelength cones. When the three types of cones are stimulated
equally the light appears white, and when they are stimulated differently the light
appears colored.

Light with different spectral distributions can produce the exact same color
sensation, so our perception of color only gives very general information about the
spectral content of light. For example, light coming from a computer display has a
different spectral composition than the light incident on the camera that recorded
the image, but both can produce the same color sensation. This ambiguity can
lead to a potentially dangerous situation in the lab. For example, lasers from
670 nm to 800 nm all appear the same color. (They all stimulate the L and M
cones in essentially the same ratio.) However, your eye’s response falls off quickly
in the near-infrared, so a dangerous 800 nm high-intensity beam can appear
about the same brightness as an innocuous 670 nm laser pointer.

S

M

L

400 500 600 700 800

wavelength (nm)

Figure 2.10 Normalized cone sen-
sitivity functions

Because we have three types of cones, our perception of color can be well-
represented using a three-dimensional vector space referred to as a color space.14

A color space can be defined in terms of three “basis” light sources referred to
as primaries. Different colors (i.e. the “vectors” in the color space) are created
by mixing the primary light in different ratios. If we had three primaries that
separately stimulated each type of rod (S, M, and L), we could recreate any color
sensation exactly by mixing those primaries. However, by inspecting Fig. 2.10 you
can see that this ideal set of primaries cannot be found because of the overlap
between the S, M, and L curves. Any light that will stimulate one type of cone will
also stimulate another. This overlap makes it impossible to display every possible
color with three primaries. However, it is possible to quantify all colors with three
primaries, even if the primaries can’t display the colors—we’ll see how shortly.
The range of colors that can be displayed with a given set of primaries is referred
to as the gamut of that color space. As your experience with computers suggests,
we are able to engineer devices with a very broad gamut, but there are always
colors visible in nature that cannot be recreated by a three-primary device.

The CIE1931 RGB15 color space is a very commonly encountered color space

13A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength
cones,” Vision Research, 39, 2901-2927 (1999); A. Stockman, and L. Sharpe, “Spectral sensitivities
of the middle- and long-wavelength sensitive cones derived from measurements in observers of
known genotype,” Vision Research, 40, 1711-1737 (2000).

14The methods we use to represent color are very much tied to human physiology. Other species
have photoreceptors that sense different wavelength ranges or do not sense color at all. For instance,
Papilio butterflies have six types of cone-like photoreceptors and certain types of shrimp have
twelve. Reptiles have four-color vision for visible light, and pit vipers have an additional set of “eyes”
that look like pits on the front of their face. These pits are essentially pinhole cameras sensitive
to infrared light, and give these reptiles crude night-vision capabilities. On the other hand, some
insects can perceive markings on flowers that are only visible in the ultraviolet. Each of these
species would find the color spaces we use to record and display colors to be very inaccurate.

15CIE is an abbreviation for the French “Commission Internationale de l’Éclairage,” an interna-
tional commission that defines lighting and color standards. This standard was adopted in 1931,
and hence the name. Note that CIE1931 is not the RGB space most commonly encountered on a
computer to define colors on webpages and in photos—that space is referred to as sRGB and uses a
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based on a series of experiments performed by W. David Wright and John Guild
in the late 1920s. In these experiments, test subjects were asked to match the
color of a monochromatic test light source by mixing monochromatic primaries
at 700 nm (R), 546.1 nm (G), and 435.8 nm (B). The relative amount of R , G , and B
light required to match the color at each test wavelength was recorded as the color
matching functions r̄ (λ), ḡ (λ), and b̄(λ), shown in Fig. 2.11. Note that the color
matching functions sometimes go negative. This is most noticeable for r̄ (λ), but
all three have negative values. These negative values indicate that the test color
was outside the gamut of the primaries (i.e. the color of the test source could not
be matched by adding primaries). In these cases, the observers matched the test
light as closely as possible by mixing primaries, and then they added some of the
primary light to the test light until the colors matched. The amount of primary
light that had to be added to the test light was recorded as a negative number. In
this way they were able to quantify the color, even though it couldn’t be displayed
using their primaries.

Test Wavelength (nm)

400 500 600 700

0

Figure 2.11 The CIE 1931 RGB
color-matching functions.To calculate the color components of an arbitrary light source with a radio-

metric spectrum I (λ), we integrating the spectrum against the color matching
functions:

R =
∫

I (λ)r̄ dλ G =
∫

I (λ)ḡ dλ B =
∫

I (λ)b̄dλ (2.64)

The triplet of numbers (R,G ,B) then uniquely define the color of the light source.
If R, G , or B turn out to be negative for a given I (λ), then that color of light
falls outside the gamut of these particular primaries. However, the negative
coordinates still provide a valid abstract representation of that color.

The RGB color space is an additive color model, where light emitting pri-
maries are added together to produce color and the absence of light gives black.
Subtractive color models produce color starting with a white reflective substrate
(i.e. something that reflects all frequencies of visible light equally like a piece
of paper or canvas) and then placing absorbing pigments over the substrate to
remove portions of the reflected spectrum.

Some schemes for displaying colors employ more than three basis vectors. For
example, color printers typically use the subtractive cyan, magenta, yellow, and
black (CMYK) color space, and some display manufacturers add a fourth additive
primary, such as yellow, to the typical set of red, green, and blue primaries. The
extra basis vector increases the range of colors that can be displayed by these
systems (i.e. it increases the gamut). However, the fourth basis vector makes
the color space overdetermined and only helps in displaying colors—we can
abstractly represent all colors using just three coordinates in an appropriately
chosen basis.

Example 2.4

different set of primaries.
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The CIE1931 XYZ color space is derived from the CIE1931 RGB space by the trans-
formation  X

Y
Z

= 1

0.17697

 0.49 0.31 0.20
0.17697 0.81240 0.01063

0.00 0.01 0.99

 R
G
B

 (2.65)

where X , Y , and Z are the color coordinates in the new basis. The matrix elements
in (2.65) were carefully chosen to give this color space some desirable properties:
the new coordinates (X , Y , or Z ) are always positive; the Y coordinate gives the
photometric brightness of the light while the X and Z coordinates describe the
color part (i.e. the chromaticity) of the light; and the coordinate (1/3,1/3,1/3) gives
the color white.

The XYZ coordinates do not represent new primaries, but rather linear combina-
tions of the original primaries. Find the representation in the CIE1931 RGB basis
for each of the basis vectors in the XYZ space.

Solution: We first invert the transformation matrix to find R
G
B

=
 0.4185 −0.1587 −0.08283

−0.09117 0.2524 0.01571
0.0009209 −0.002550 0.1786

 X
Y
Z


For the X basis vector, the RGB components are found as R

G
B

=
 0.4185 −0.1587 −0.08283

−0.09117 0.2524 0.01571
0.0009209 −0.002550 0.1786

 1
0
0


Thus, the X basis vector RGB components are (0.4185,−0.09117,+0.0009209). Sim-
ilar calculations for the Y and Z basis vectors give (−0.1587,0.2524,−0.002550) and
(−0.08283,0.01571,0.1786), respectively. Because the XYZ basis vectors contain
negative amounts of the physical RGB primaries, the XYZ basis is not physically
realizable. However, it is extensively used because it can abstractly represent all
colors using a triplet of positive numbers.

Appendix 2.B Clausius-Mossotti Relation

Equation (2.35) has the form re =αE/qe , where α is called the atomic (or molecu-
lar) polarizability. We take absorption to be negligible so that α is real. E is the
macroscopic field in the medium, which includes a contribution from all of the
dipoles. To avoid double-counting the dipole’s own field, we should replace E
with

Eactual ≡ E−Edipole (2.66)

and write
qe re =αEactual (2.67)
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That is, we ought not to allow the dipole’s own field to act on itself as we previously
(inadvertently) did. Here Edipole is the average field that a dipole contributes to its
quota of space in the material.

Since N is the number of dipoles per volume, each dipole occupies a volume
1/N . As will be shown below, the average field due to a dipole16 centered in such
a volume (symmetrically chosen) is

Edipole =−N qe re

3ϵ0

(2.68)

Substitution of (2.68) and (2.67) into (2.66) yields

Eactual = E+ NαEactual

3ϵ0

⇒ Eactual =
E

1− Nα
3ϵ0

(2.69)

Then (2.67) becomes

qe re = αE

1− Nα
3ϵ0

(2.70)

According to (2.16), the susceptibility is defined via P = ϵ0χE, where E is the
macroscopic field. The polarization is always based on the combined behavior of
all of the dipoles P = N qe re (see (2.31)). Equating these two expressions for P and
inserting (2.70), we find that the susceptibility is given by

χ (ω) =
Nα(ω)
ϵ0

1− Nα(ω)
3ϵ0

(2.71)

This is known as the Clausius-Mossotti relation. In Section 2.4, we only included
the numerator of (2.71). The extra term in the denominator becomes important
when N is sufficiently large, which is the case for liquid or solid densities.

Since we neglect absorption, from (2.25) we have χ= n2−1, and we may write

n2 −1 = Nα/ϵ0

1−Nα/3ϵ0

(2.72)

In this case, we may invert the relation to write Nα/ϵ0 in terms of the index:17

Nα

ϵ0

= 3
n2 −1

n2 +2
(2.73)

16In principle, the detailed fields of nearby dipoles should also be considered rather than repre-
senting their influence with the macroscopic field. However, if they are symmetrically distributed
the result is the same. See J. D. Jackson, Classical Electrodynamics, 3rd ed., Sect. 4.5 (New York: John
Wiley, 1999).

17This form of Clausius-Mossotti relation, in terms of the refractive index, was renamed the
Lorentz-Lorenz formula, but probably undeservedly so, since it is essentially the same formula.
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Example 2.5

Xenon vapor at STP (density 4.46×10−5mol/cm3) has index n = 1.000702 measured
at wavelength 589nm. Use (a) the Clausius-Mossotti relation (2.71) and (b) the
uncorrected formula (i.e. numerator only) to predict the index for liquid xenon
with density 2.00×10−2mol/cm3. Compare with the measured value of n = 1.332.18

Solution: At the low density, we may safely neglect the correction in the denom-
inator of (2.72) and simply write Natmα/ϵ0 = 1.0007022 − 1 = 1.404× 10−3. The
liquid density Nliquid is 2.00× 10−2/4.46× 10−5 = 449 times greater. Therefore,
Nliquidα/ϵ0 = 449×1.404×10−3 = 0.630. (a) According to Clausius-Mossotti (2.72),
the index is

n =
√

1+ 0.630

1−0.630/3
= 1.341

(b) On the other hand, without the correction in the denominator, we get

n =p
1+0.630 = 1.277

The Clausius-Mossotti formula gets much closer to the measured value.

Figure 2.12 The field lines sur-
rounding a dipole.

Average Field Produced by a Dipole

Consider a dipole comprised of point charges ±qe separated by spacing re = ẑd . If
the dipole is centered on the origin, then by Coulomb’s law the field surrounding
the point charges is

E = qe

4πϵ0

r− ẑd/2

|r− ẑd/2|3 − qe

4πϵ0

r+ ẑd/2

|r+ ẑd/2|3

We wish to compute the average field within a cubic volume V = L3 that symmet-
rically encompasses the dipole.19 We take the volume dimension L to be large
compared to the dipole dimension d . Integrating the field over this volume yields

∫
Ed v = qe

4πϵ0

L/2∫
- L/2

d x

L/2∫
- L/2

d y

L/2∫
- L/2

d z

[
xx̂+ y ŷ+ (z −d/2) ẑ[

x2 + y2 + (z −d/2)2]3/2
− xx̂+ y ŷ+ (z +d/2) ẑ[

x2 + y2 + (z +d/2)2]3/2

]

=−ẑ
qe

2πϵ0

L/2∫
- L/2

d x

L/2∫
- L/2

d y

 1√
x2 + y2 + (L−d)2 /4

− 1√
x2 + y2 + (L+d)2 /4


18D. H. Garside, H. V. Molgaard, and B. L. Smith, “Refractive Index and Lorentz-Lorenz function

of Xenon Liquid and Vapour,” J. Phys. B: At. Mol. Phys. 1, 449-457 (1968).
19Authors often obtain the same result using a spherical volume with the (usually unmentioned)

conceptual awkwardness that spheres cannot be closely packed to form a macroscopic medium
without introducing voids.
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The terms multiplying x̂ and ŷ vanish since they involve odd functions integrated
over even limits on either x or y , respectively. On the remaining term, the integra-
tion on z has been executed. Before integrating the remaining expression over x
and y , we make the following approximation based on L ≫ d :

1√
x2 + y2 + (L±d)2 /4

∼= 1√
x2 + y2 +L2/4

1√
1± Ld/2

x2+y2+L2/4

∼= 1√
x2 + y2 +L2/4

[
1∓ Ld/4

x2 + y2 +L2/4

]
which will make integration considerably easier.20 Then integration over the y
dimension brings us to21

∫
Ed v =−ẑ

qe d

4πϵ0

L/2∫
-L/2

d x

L/2∫
-L/2

Ld y[
x2 + y2 +L2/4

]3/2
=−ẑ

qe d

4πϵ0

L/2∫
-L/2

L2d x(
x2 +L2/4

)p
x2 +L2/2

The final integral is the same as twice the integral from 0 to L/2. Then, with x > 0,
we can employ the variable change s = x2+L2/4 ⇒ 2d x = d s/

p
s −L2/4 and obtain

∫
Ed v =−ẑ

qe d

4πϵ0

L2/2∫
L2/4

L2d s

s
p

s2 −L4/16
=−ẑ

qe d

4πϵ0

4π

3

Reinstalling re = ẑd and dividing by the volume 1/N , allotted to individual dipoles,
brings us to the anticipated result (2.68).

Appendix 2.C Energy Density of Electric Fields

In this appendix we show that the term ϵ0E 2/2 in (2.53) corresponds to the energy
density of an electric field.22 The electric potential φ(r) (in units of energy per

20One might be tempted to begin this calculation with the well-known dipole field

E = qe

4πϵ0r 3

 r− ẑd/2[
1− ẑ · r̂ d

r + d 2

4r 2

]3/2
− r+ ẑd/2[

1+ ẑ · r̂ d
r + d 2

4r 2

]3/2

∼= qe d

4πϵ0r 3 [3r̂ (ẑ · r̂)− ẑ]

which relies on the approximation[
1± ẑ · r̂d/r +d2/4r 2

]−3/2 ∼= [1± ẑ · r̂d/r ]−3/2 ∼= 1∓ 3d ẑ · r̂

2r

This dipole-field expression, while useful for describing the field surrounding the dipole, contains
no information about the fields internal to the dipole. Note that we integrate z through the origin,
which would violate the above assumption r ≫ d . Alternatively, the influence of the internal fields
on our integral could be accomplished using a delta function as is done in J. D. Jackson, Classical
Electrodynamics, 3rd ed., p. 149 (New York: John Wiley, 1999).

21Two useful integral formulas are (0.61) and (0.61).
22J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory 3rd ed., Sect.

6-3 (Reading, Massachusetts: Addison-Wesley, 1979).
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charge, or volts) describes the potential energy that a charge would experience
if placed at any given point in the field. The electric field and the potential are
connected through

E (r) =−∇φ (r) (2.74)

The energy U necessary to assemble a distribution of charges (owing to attraction
or repulsion) can be written in terms of a summation over all of the charges (or
charge density ρ (r)) located within the potential:

U = 1

2

∫
V

φ (r)ρ (r)d v (2.75)

We consider the potential to arise from the charges themselves. The factor 1/2
is necessary to avoid double counting. To appreciate this factor consider just
two point charges: We only need to count the energy due to one charge in the
presence of the other’s potential to obtain the energy required to bring the charges
together.

A substitution of (1.1) for ρ (r) into (2.75) gives

U = ϵ0

2

∫
V

φ (r)∇·E (r)d v (2.76)

Next, we use the vector identity in P0.9 and get

U = ϵ0

2

∫
V

∇· [φ (r)E (r)
]

d v − ϵ0

2

∫
V

E (r) ·∇φ (r)d v (2.77)

An application of the divergence theorem (0.11) on the first integral and a substi-
tution of (2.74) into the second integral yields

U = ϵ0

2

∮
S

φ (r)E (r) · n̂d a + ϵ0

2

∫
V

E (r) ·E (r)d v (2.78)

We can consider the volume V (enclosed by S) to be as large as we like, say
a sphere of radius R, so that all charges are contained well within it. Then the
surface integral over S vanishes as R →∞ since φ∼ 1/R and E ∼ 1/R2, whereas
d a ∼ R2. Then the total energy is expressed solely in terms of the electric field:

U =
∫

Al l
Space

uE (r)d v (2.79)

where

uE (r) ≡ ϵ0E 2

2
(2.80)

is interpreted as the energy density of the electric field.
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Appendix 2.D Energy Density of Magnetic Fields

In a derivation similar to that in appendix 2.C, we consider the energy associated
with magnetic fields.23 The magnetic vector potential A (r) (in units of energy
per charge×velocity) describes the potential energy that a charge moving with
velocity v would experience if placed in the field. The magnetic field and the
vector potential are connected through

B (r) =∇×A (r) (2.81)

The energy U necessary to assemble a distribution of currents can be written in
terms of a summation over all of the currents (or current density J (r)) located
within the vector potential field:

U = 1

2

∫
V

J (r) ·A (r)d v (2.82)

As in (2.75), the factor 1/2 is necessary to avoid double counting the influence of
the currents on each other.

Under the assumption of steady currents (no variations in time), we may
substitute Ampere’s law (1.21) into (2.82), which yields

U = 1

2µ0

∫
V

[∇×B (r)] ·A (r)d v (2.83)

Next we employ the vector identity P0.8 from which the previous expression
becomes

U = 1

2µ0

∫
V

B (r) · [∇×A (r)]d v − 1

2µ0

∫
V

∇· [A (r)×B (r)]d v (2.84)

Upon substituting (2.81) into the first equation and applying the Divergence
theorem (0.11) on the second integral, this expression for total energy becomes

U = 1

2µ0

∫
V

B (r) ·B (r)d v − 1

2µ0

∮
S

[A (r)×B (r)] · n̂ d a (2.85)

As was done in connection with (2.78), if we choose a large enough volume (a
sphere with radius R → ∞), the surface integral vanishes since A ∼ 1/R and
B ∼ 1/R2, whereas d a ∼ R2. The total energy (2.85) then reduces to

U =
∫

Al l
Space

uB (r)d v (2.86)

where

uB (r) ≡ B 2

2µ0

(2.87)

is the energy density for a magnetic field.
23J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory 3rd ed., Sect.

12-2 (Reading, Massachusetts: Addison-Wesley, 1979.
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Exercises

Exercises for 2.4 The Lorentz Model of Dielectrics

P2.1 Verify that (2.35) is a solution to (2.34).

P2.2 Derive the Sellmeier equation

n2 = 1+ Aλ2
vac

λ2
vac −λ2

0,vac

from (2.39) for a gas with negligible absorption (i.e. γ∼= 0, valid far from
resonance ω0), where λ0,vac corresponds to frequency ω0 and A is a
constant. Many materials (e.g. glass, air) have strong resonances in the
ultraviolet. In such materials, do you expect the index of refraction for
blue light to be greater than that for red light? Make a sketch of n as a
function of wavelength for visible light down to the ultraviolet (where
λ0,vac is located).

P2.3 In the Lorentz model, take N = 1028 m−3 for the density of bound
electrons in an insulator, and a single transition atω0 = 6×1015 rad/sec
(in the UV), and damping γ = ω0/5 (quite broad). Assume that the
magnitude of E0 is 104 V/m. For three frequencies i) ω = ω0 −2γ, ii)
ω=ω0, and iii) ω=ω0 +2γ find:

(a) the amplitude and phase of the charge displacement re (2.35) rela-
tive to the phase of E0e i (k·r−ωt ).

(b) the magnitude and complex phase of the susceptibility χ(ω). Does
χ(ω) depend on the strength of the E-field?

(c) n and κ at the three frequencies via (2.29) and (2.27).
Answer: i) n = 1.53, κ= 0.0817, ii) n = 1.66, κ= 1.33, iii) n = 0.470, κ= 0.263.

(d) the three speeds of light in terms of c and how far light penetrates
into the material before only 1/e of the amplitude of E remains.

P2.4 (a) Use a computer to plot n and κ as a function of ω for a dielectric
(i.e. obtain graphs such as the ones in Fig. 2.5). Use the Lorentz model
and the following parameters: ω0 = 10ωp, and γ=ωp; plot your func-
tion from ω = 0 to ω = 20ωp. No need to choose a value for ωp; your
horizontal axis will be in units of ωp.

(b) Plot n and κ as a function of frequency for a material that has
three resonant frequencies: ω01 = 10ωp, γ1 =ωp, f1 = 0.5; ω02 = 15ωp,
γ2 =ωp, f2 = 0.25; and ω03 = 25ωp, γ3 = 3ωp, f3 = 0.25. Plot the results
from ω= 0 to ω= 30ωp.
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Exercises for 2.5 Index of Refraction of a Conductor

P2.5 For silver, the complex refractive index is characterized by n = 0.13
and κ= 4.0.24 Find the distance that light travels inside of silver before
the field is reduced by a factor of 1/e. Assume a wavelength of λvac =
633 nm. What is the speed of the wave crests in the silver (written as a
number times c)? Are you surprised?

P2.6 Use (2.48) and expressions that follow (2.48) to calculate the index
of silver at λ = 633nm. The density of free electrons in silver is N =
5.86×1028m−3 and the DC conductivity is σ= 6.62×107C 2/(J ·m · s).25

Compare with the actual index given in P2.5.
Answer: n + iκ= 0.02+ i 4.5

P2.7 The uppermost part of the atmosphere is ionized by solar radiation,
which creates a low-density plasma called the ionosphere. Note: ω0 = 0
and γ= 0.

(a) If the index of refraction of the ionosphere is N = 0.9 for an FM
station at ν=ω/2π= 100 MHz, calculate the number of free electrons
per cubic meter.

(b) What is the complex refractive index of the ionosphere for an AM
radio station at 1160 kHz? Is this frequency above or below the plasma
frequency? Assume the same density of free electrons as in part (a).

For your information, AM radio reflects better than FM radio from the
ionosphere (like visible light from a metal mirror). At night, the lower
layer of the ionosphere goes away so that AM radio waves reflect from
a higher layer.

P2.8 Use a computer to plot n and κ as a function of frequency for a con-
ductor (obtain plots such as the ones in Fig. 2.7). Let γ= 0.02ωp, and
plot your function from ω= 0.6ωp to ω= 2ωp.

Exercises for 2.7 Irradiance of a Plane Wave

P2.9 In the case of a linearly-polarized plane wave, where the phase of each
vector component of E0 is the same, re-derive (2.62) directly from the
real field (2.21). For simplicity, you may ignore absorption (i.e. κ∼= 0).

HINT: The time-average of cos2
(
k · r−ωt +φ)

is 1/2.

P2.10 (a) Find the intensity (in W/cm2) produced by a short laser pulse with
duration ∆t = 2.5×10−14 s and energy E = 100 mJ, focused in vacuum
to a round spot with radius r = 5 µm.

24Handbook of Optical Constants of Solids, Edited by E. D. Palik (Elsevier, 1997).
25G. Burns, Solid State Physics, p. 194 (Orlando: Academic Press, 1985).
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(b) What is the peak electric field Ex (assuming Ey = Ez = 0) in units of
V/Å?

HINT: The SI units of electric field are N/C = V/m.

(c) What is the peak magnetic field (in T = kg/(s ·C)?

P2.11 (a) What is the intensity (in W/cm2) on the retina when looking directly
at the sun? Assume that the eye’s pupil has a radius rpupil = 1 mm.
Take the Sun’s irradiance at the earth’s surface to be 1.1 kW/m2, and
neglect refractive index (i.e. set n = 1). HINT: The Earth-Sun distance
is do = 1.5×108 km and the pupil-retina distance is di = 22 mm. The
radius of the Sun rSun = 7.0× 105 km is de-magnified on the retina
according to the ratio di /do.

(b) What is the intensity at the retina when looking directly into a
1 mW HeNe laser? Assume that the smallest radius of the laser beam
is rwaist = 0.5 mm positioned do = 2 m in front of the eye, and that the
entire beam enters the pupil. Compare with part (a).

P2.12 Show that the magnetic field of an intense laser with λ= 1 µm becomes
important for a free electron oscillating in the field at intensities above
1018 W/cm2. This marks the transition to relativistic physics. Neverthe-
less, for convenience, use classical physics in making the estimate.

HINT: At lower intensities, the oscillating electric field dominates, so
the electron motion can be thought of as arising solely from the electric
field. Use this motion to calculate the magnetic force on the mov-
ing electron, and compare it to the electric force. The forces become
comparable at 1018 W/cm2.

Exercises for 2.A Radiometry, Photometry, and Color

400 500 600 700
wavelength (nm)

Figure 2.13 Color matching func-
tions for the CIE XYZ color space.

P2.13 The CIE1931 RGB color matching function r̄ (λ), ḡ (λ), and b̄(λ) can be
transformed using (2.65) to obtain color matching functions for the
XYZ basis: x̄(λ), ȳ(λ), and z̄(λ), plotted in Fig 2.13. As with the RGB
color matching functions, the XYZ color matching functions can be
used to calculate the color coordinates in the XYZ basis for an arbitrary
spectrum:

X =
∫

I (λ)x̄dλ Y =
∫

I (λ)ȳdλ Z =
∫

I (λ)z̄dλ (2.88)

The function ȳ(λ) was chosen to be exactly the scotopic response curve
(shown in Fig. 2.9), so that Y describes the photometric brightness of
the light.

(a) Obtain the XYZ color matching functions from www.cvrl.org and
calculate the luminous power for a light source with a radiometric

https://www.cvrl.org/
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spectrum
I (λ) = I0e−[(λ−500 nm)/(20 nm)]2

with I0 = 1 W/nm. HINT: Remember that the response function ȳ is
the photometric response function of the eye. The standard units from
the website give ȳ with a peak value of one, so you’ll need to use the
fact that 1 lm = 1/683 W at the peak of the response curve to get the
units right.

(b) Calculate the XYZ color coordinates for the light source in (a).

Figure 2.14 A chromaticity dia-
gram plotting the colors visible
to the human eye versus x and
y , as defined in P2.13. The col-
ors of single-wavelength light lie
along the dark line around the
edge of the diagram, while the
colors that can be displayed by
standard computer and TV dis-
plays fall inside the white sRGB
triangle. This image was created
using sRGB encoding so colors
outside the sRGB triangle can only
be approximated in the chart. All
display systems suffer from a lim-
ited gamut like this, so the only
way to experience the vivid sen-
sation of single-wavelength light
is to view the scattered light from
a laser (or a gas discharge with a
grating) in person.

(c) Calculate the normalized x, y , and z components defined by

x = X

X +Y +Z

y = Y

X +Y +Z

z = Z

X +Y +Z
= 1−x − y

Locate this color on the chromaticity diagram in Fig. 2.14. Describe
what color light with this spectrum would appear, and how it is possible
to represent it using just two coordinates (x and y) as on the diagram.
(HINT: You can display a color with bright primaries or dim primaries
without changing the color as long as the color of the primaries doesn’t
change.)

P2.14 LEDs used in home lighting typically have a power spectrum that looks
similar to this function:

I (λ) = I0

[
e

(
λ−460 nm

15 nm

)2

+0.4e
(
λ−560 nm

90 nm

)2]
where the narrow peak is a blue LED and the broad peak is a yellow
phosphor coating that is deposited over the blue LED. Use the process
below to display the color of this LED on a computer display.

(a) Obtain a copy of the XYZ color matching functions (available at
www.cvrl.org) and calculate the XYZ coordinates using the process
described in P2.13.

(b) Now transform the XYZ coordinates into the (R̃,G̃ , B̃) basis using R̃
G̃
B̃

=
 3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

 X
Y
Z


Adjust I0 so that the largest XYZ coordinate has a numerical value of
one.

https://www.cvrl.org/
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(c) The (R̃,G̃ , B̃) values reflect a linear scaling of the stimulus values,
but your eyes respond logarithmically, not linearly. This design fea-
ture allows you to view faint and bright stars in the night sky at the
same time, even though their brightness differs by several orders of
magnitude. The sRGB standard approximates the response of the eye
by taking each (R̃,G̃ , B̃) value, represented by C̃ , and mapping it to the
corresponding component in the sRGB basis like this:

CsRGB =
{

12.92C̃ C̃ ≤ 0.0031308

1.055C̃
1

2.4 −0.055 C̃ > 0.0031308

Perform this transformation for each component to find the sRGB
components of your light. Then use a computer program (or web site)
to display the color of this LED light. It is common to scale your sRGB
values to a maximum of 255 for use with 24-bit color rendering (8 bits
per channel).



Chapter 3

Reflection and Refraction

As we know from everyday experience, when light arrives at an interface between
materials it partially reflects and partially transmits. In this chapter, we examine
what happens to plane waves when they propagate from one material (charac-
terized by indices n or even by complex index N ) to another material. We will
derive expressions to quantify the amount of reflection and transmission. The
results depend on the angle of incidence (i.e. the angle between k and the surface
normal) as well as on the orientation of the electric field (called polarization – not
to be confused with P, also called polarization). In this chapter, we consider only
isotropic materials (e.g. glass); in chapter 5 we consider anisotropic materials (e.g.
a crystal).

As we develop the connection between incident, reflected, and transmitted
light waves,1 several familiar relationships will emerge naturally (e.g. Snell’s law
and Brewster’s angle). The formalism also describes polarization-dependent
phase shifts upon reflection (especially interesting in the case of reflections from
metals).

For simplicity, we initially neglect the imaginary part of the refractive index.
Each plane wave is thus characterized by a real wave vector k. We will write each
plane wave in the form E(r, t ) = E0 exp[i (k · r−ωt )], where, as usual, only the real
part of the field corresponds to the physical field. The restriction to real refractive
indices is not as serious as it might seem. The use of the letter n instead of N

hardly matters. The math is all the same, which demonstrates the power of the
complex notation. We can simply update our expressions in the end to include
complex refractive indices, but in the meantime it is easier to think of absorption
as negligible.

3.1 Refraction at an Interface

Consider a planar boundary between two materials with different indices. Let
index ni characterize the material on the left, and the index nt characterize the

1See M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 1.5 (Cambridge University Press,
1999).
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material on the right, as depicted in the Fig. 3.1. When a plane wave traveling
in the direction ki is incident on the boundary from the left, it gives rise to a
reflected plane wave traveling in the direction kr and a transmitted plane wave
traveling in the direction kt . The incident and reflected waves exist only to the
left of the material interface, and the transmitted wave exists only to the right of
the interface. The angles θi , θr, and θt give the angles that each respective wave
vector (ki , kr, and kt ) makes with the normal to the interface.

For simplicity, we’ll assume that both of the materials are isotropic here.
(Chapter 5 discusses refraction for anisotropic materials.) In this case, ki , kr, and
kt all lie in a single plane, referred to as the plane of incidence, (i.e. the plane
represented by the surface of this page). We are free to orient our coordinate
system in many different ways (and every textbook seems to do it differently!).2

We choose the y–z plane to be the plane of incidence, with the z-direction normal
to the interface and the x-axis pointing into the page.

z-axis    

x-axis
directed into page

Figure 3.1 Incident, reflected, and
transmitted plane wave fields at a
material interface.

The electric field vector for each plane wave is confined to a plane perpendic-
ular to its wave vector. We are free to decompose the field vector into arbitrary
components as long as they are perpendicular to the wave vector. It is customary
to choose one of the electric field vector components to be that which lies within
the plane of incidence. We call this p-polarized light, where p stands for parallel to
the plane of incidence. The remaining electric field vector component is directed
normal to the plane of incidence and is called s-polarized light. The s stands for
senkrecht, a German word meaning perpendicular.

Using this system, we can decompose the electric field vector Ei into its p-

polarized component E (p)
i and its s-polarized component E (s)

i , as depicted in

Fig. 3.1. The s component E (s)
i is represented by the tail of an arrow pointing

into the page, or the x-direction in our convention. The other fields Er and Et

are similarly split into s and p components as indicated in Fig. 3.1. All field
components are considered to be positive when they point in the direction of
their respective arrows.3 Note that the s-polarized components are parallel for
all three plane waves, whereas the p-polarized components are not (except at
normal incidence) because each plane wave travels in a different direction.

By inspection of Fig. 3.1, we can write the various wave vectors in terms of the
ŷ and ẑ unit vectors:

ki = ki
(
ŷsinθi + ẑcosθi

)
kr = kr

(
ŷsinθr − ẑcosθr

)
kt = kt

(
ŷsinθt + ẑcosθt

) (3.1)

Also by inspection of Fig. 3.1 (following the conventions for the electric fields
indicated by the arrows), we can write the incident, reflected, and transmitted

2For example, our convention is different than that used by E. Hecht, Optics, 3rd ed., Sect. 4.6.2
(Massachusetts: Addison-Wesley, 1998).

3Many textbooks draw the arrow for E
(p)
r in the direction opposite of ours. However, that choice

leads to an awkward situation at normal incidence (i.e. θi = θr = 0) where the arrows for the incident
and reflected fields are parallel for the s-component but anti parallel for the p-component.
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fields in terms of x̂, ŷ, and ẑ:

Ei =
[

E (p)
i

(
ŷcosθi − ẑsinθi

)+ x̂E (s)
i

]
e i[ki (y sinθi+z cosθi )−ωi t]

Er =
[

E (p)
r

(
ŷcosθr + ẑsinθr

)+ x̂E (s)
r

]
e i[kr(y sinθr−z cosθr)−ωrt]

Et =
[

E (p)
t

(
ŷcosθt − ẑsinθt

)+ x̂E (s)
t

]
e i[kt (y sinθt+z cosθt )−ωt t]

(3.2)

Each field has the form (2.8). We have utilized the k-vectors (3.1) in the exponents
of (3.2).

Figure 3.2 Animation of s- and
p-polarized fields incident on an
interface as the angle of incidence
is varied.

Now we are ready to connect the fields on one side of the interface to the
fields on the other side. This is done using boundary conditions. As explained in
appendix 3.A, Maxwell’s equations require the components of E that are parallel
to the interface to be the same on either side of the boundary. In our coordinate
system, the x̂ and ŷ components are parallel to the interface, whereas z = 0 defines
the interface. This means that at z = 0 the x̂ and ŷ components of the combined
incident and reflected fields must equal the corresponding components of the
transmitted field:[

E (p)
i ŷcosθi + x̂E (s)

i

]
e i(ki y sinθi−ωi t) +

[
E (p)

r ŷcosθr + x̂E (s)
r

]
e i(kr y sinθr−ωrt)

=
[

E (p)
t ŷcosθt + x̂E (s)

t

]
e i(kt y sinθt−ωt t) (3.3)

Since this equation must hold for all conceivable values of t and y , we are com-
pelled to set all the phase factors in the complex exponentials equal to each other.
The time portion of the phase factors requires the frequency of all waves to be the
same:

ωi =ωr =ωt ≡ω (3.4)

(We could have guessed that all frequencies would be the same; otherwise wave-
fronts would be annihilated or created at the interface.) Similarly, equating the
spatial terms in the exponents of (3.3) requires

ki sinθi = kr sinθr = kt sinθt (3.5)

Now recall from (2.19) the relations ki = kr = niω/c and kt = ntω/c. With these
relations, (3.5) yields the law of reflection

θr = θi (3.6)

and Snell’s law
ni sinθi = nt sinθt (3.7)

The three angles θi , θr, and θt are not independent. The reflected angle matches
the incident angle, and the transmitted angle obeys Snell’s law. The phenomenon
of refraction refers to the fact that θi and θt are different. That is, light ‘bends’ as
it transmits through an interface.

Willebrord Snell (or Snellius) (1580–
1626, Dutch) was an astronomer and
mathematician born in Leiden, Nether-
lands. In 1613 he succeeded his father
as professor of mathematics at the Uni-
versity of Leiden. He was an accom-
plished mathematician, developing a
new method for calculating π as well
as an improved method for measuring
the circumference of the earth. He is
most famous for his rediscovery of the
law of refraction in 1621. (The law was
known (in table form) to the ancient
Greek mathematician Ptolemy, to Per-
sian engineer Ibn Sahl (900s), and to
Polish philosopher Witelo (1200s).) Snell
authored several books, including one
on trigonometry, published a year after
his death. (Wikipedia)

https://vimeo.com/717105888
https://en.wikipedia.org/wiki/Willebrord_Snellius
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Because the exponents are all identical, (3.3) reduces to two relatively simple
equations (one for each dimension, x̂ and ŷ):

E (s)
i +E (s)

r = E (s)
t (3.8)

and (
E (p)

i +E (p)
r

)
cosθi = E (p)

t cosθt (3.9)

We have derived these equations from the boundary condition (3.54) on the
parallel component of the electric field. This set of equations has four unknowns
(E (p)

r , E (s)
r , E (p)

t , and E (s)
t ), assuming that we pick the incident fields. We require

two additional equations to solve the system. These are obtained using the
separate boundary condition on the parallel component of magnetic fields given
in (3.58) (also discussed in appendix 3.A).

From Faraday’s law (1.3), we have for a plane wave (see (2.56))

B = k×E

ω
= n

c
û×E (3.10)

where û ≡ k/k is a unit vector in the direction of k. We have also utilized (2.19)
for a real index. This expression is useful for writing Bi , Br, and Bt in terms of the
electric field components that we have already introduced. When injecting (3.1)
and (3.2) into (3.10), the incident, reflected, and transmitted magnetic fields turn
out to be

Bi = ni

c

[
−x̂E (p)

i +E (s)
i

(−ẑsinθi + ŷcosθi
)]

e i[ki (y sinθi+z cosθi )−ωi t]

Br = nr

c

[
x̂E (p)

r +E (s)
r

(−ẑsinθr − ŷcosθr
)]

e i[kr(y sinθr−z cosθr)−ωrt]

Bt = nt

c

[
−x̂E (p)

t +E (s)
t

(−ẑsinθt + ŷcosθt
)]

e i[kt (y sinθt+z cosθt )−ωt t]

(3.11)

Next, we apply the boundary condition (3.58), namely that the components of B
parallel to the interface (i.e. in the x̂ and ŷ dimensions) are the same4 on either
side of the plane z = 0. Since we already know that the exponents are all equal
and that θr = θi and ni = nr, the boundary condition gives

ni

c

[
−x̂E (p)

i +E (s)
i ŷcosθi

]
+ ni

c

[
x̂E (p)

r −E (s)
r ŷcosθi

]
= nt

c

[
−x̂E (p)

t +E (s)
t ŷcosθt

]
(3.12)

As before, (3.12) reduces to two relatively simple equations (one for the x̂ dimen-
sion and one for the ŷ dimension):

ni

(
E (p)

i −E (p)
r

)
= nt E (p)

t (3.13)

and
ni

(
E (s)

i −E (s)
r

)
cosθi = nt E (s)

t cosθt (3.14)

These two equations together with (3.8) and (3.9) allow us to solve for the reflected
Er and transmitted fields Et for the s and p polarization components. However,
(3.8), (3.9), (3.13), and (3.14) are not yet in their most convenient form.

4We assume the permeability µ is the same everywhere—no magnetic effects.



3.2 The Fresnel Coefficients 77

3.2 The Fresnel Coefficients

Augustin Fresnel first derived the equations in the previous section. Since he lived
well before Maxwell’s time, he did not have the benefit of Maxwell’s equations
as we have. Instead, Fresnel thought of light as transverse mechanical waves
propagating within materials. (Fresnel was naturally a proponent of luminiferous
ether.) Instead of relating the parallel components of the electric and magnetic
fields across the boundary between the materials, Fresnel used the principle that
the two materials should not slip relative to each other at the boundary. This
‘gluing’ of the materials at the interface also forbids the possibility of gaps or the
like forming at the interface as the two materials experience wave vibrations. This
mechanical approach to light worked splendidly, arriving at the same results that
we obtained from our modern viewpoint.

Augustin Fresnel (1788–1829, French)
was born in Broglie, France, the son of
an architect. As a child, he was slow to
develop and still could not read when
he was eight years old, but by age six-
teen he excelled and entered the École
Polytechnique where he earned distinc-
tion. As a young man, Fresnel began a
successful career as an engineer, but
he lost his post in 1814 when Napoleon
returned to power. (Fresnel had sup-
ported the Bourbons.) This difficult year
was when Fresnel turned his attention to
optics. Fresnel became a major propo-
nent of the wave theory of light and four
years later wrote a paper on diffraction
for which he was awarded a prize by the
French Academy of Sciences. A year
later he was appointed commissioner
of lighthouses, which motivated the in-
vention of the Fresnel lens (still used in
many commercial applications). Fres-
nel was underappreciated before his
untimely death from tuberculosis. Many
of his papers did not make it into print
until years later. Fresnel made huge ad-
vances in the understanding of reflection,
diffraction, polarization, and birefrin-
gence. In 1824 Fresnel wrote to Thomas
Young, “All the compliments that I have
received from Arago, Laplace and Biot
never gave me so much pleasure as the
discovery of a theoretic truth, or the con-
firmation of a calculation by experiment.”
Augustin Fresnel is a hero of one of the
authors of this textbook. (Wikipedia)

Fresnel wrote the relationships between the various plane waves depicted in
Fig. 3.1 in terms of coefficients that compare the reflected and transmitted field
amplitudes to those of the incident field. In the following example, we illustrate
this procedure for s-polarized light. It is left as a homework exercise to solve the
equations for p-polarized light (see P3.1).

Example 3.1

Calculate the ratio of transmitted field to the incident field and the ratio of the
reflected field to incident field for s-polarized light.

Solution: We write (3.8) and (3.14) as

E (s)
i +E (s)

r = E (s)
t and E (s)

i −E (s)
r = nt cosθt

ni cosθi
E (s)

t (3.15)

Adding these two equations yields

2E (s)
i =

[
1+ nt cosθt

ni cosθi

]
E (s)

t (3.16)

After a little rearrangement we get

E (s)
t

E (s)
i

= 2ni cosθi

ni cosθi +nt cosθt
(3.17)

To get the ratio of reflected field to incident field, we subtract the equations in
(3.15) to get

2E (s)
r =

[
1− nt cosθt

ni cosθi

]
E (s)

t (3.18)

We divide (3.18) by (3.16), and after simplification arrive at

E (s)
r

E (s)
i

= ni cosθi −nt cosθt

ni cosθi +nt cosθt
(3.19)

https://en.wikipedia.org/wiki/Augustin-Jean_Fresnel
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The ratio of the reflected and transmitted field components to the incident
field components are specified by the Fresnel coefficients, which are defined as
follows:

rs ≡ E (s)
r

E (s)
i

= ni cosθi −nt cosθt

ni cosθi +nt cosθt
= sinθt cosθi − sinθi cosθt

sinθt cosθi + sinθi cosθt
= sin(θt −θi )

sin(θt +θi )
(3.20)

ts ≡
E (s)

t

E (s)
i

= 2ni cosθi

ni cosθi +nt cosθt
= 2sinθt cosθi

sinθt cosθi + sinθi cosθt
= 2sinθt cosθi

sin(θt +θi )
(3.21)

rp ≡ E (p)
r

E (p)
i

= ni cosθt −nt cosθi

ni cosθt +nt cosθi
= sinθt cosθt − sinθi cosθi

sinθt cosθt + sinθi cosθi
= tan(θt −θi )

tan(θt +θi )
(3.22)

tp ≡ E (p)
t

E (p)
i

= 2ni cosθi

ni cosθt +nt cosθi
= 2sinθt cosθi

sinθt cosθt + sinθi cosθi
= 2sinθt cosθi

sin(θt +θi )cos(θt −θi )

(3.23)

All of the above forms of the Fresnel coefficients are potentially useful, depending
on the problem at hand. Remember that the angles in the coefficient are not
independently chosen, but are subject to Snell’s law (3.7). Snell’s law has been
used to produce the alternative expressions from the first.
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0 20 40 60 80

0.5

Figure 3.3 The Fresnel coefficients
plotted versus θi for the case of an
air-glass interface with ni = 1 and
nt = 1.5.

The Fresnel coefficients pin down the electric field amplitudes on the two
sides of the boundary. They also keep track of phase shifts at a boundary. In
Fig. 3.3 we have plotted the Fresnel coefficients for the case of an air-glass inter-
face. Notice that the reflection coefficients are sometimes negative in this plot,
which corresponds to a phase shift of π upon reflection (note e iπ =−1). Later we
will see that when absorbing materials are encountered, more complicated phase
shifts can arise due to the complex index of refraction.

3.3 Reflectance and Transmittance

We often want to know the fraction of power that reflects from or transmits
through an interface. Energy conservation requires the incident power to balance
the reflected and transmitted power:

Pi = Pr +Pt (3.24)

Moreover, the power separates cleanly into power associated with s- and p-
polarized fields:

P (s)
i = P (s)

r +P (s)
t and P (p)

i = P (p)
r +P (p)

t (3.25)

Since power is proportional to intensity (i.e. power per area) and intensity
is proportional to the square of the field amplitude. We can write the fraction
of reflected power, called reflectance, in terms of our previously defined Fresnel



3.3 Reflectance and Transmittance 79

coefficients:

Rs ≡ P (s)
r

P (s)
i

= I (s)
r

I (s)
i

=

∣∣∣E (s)
r

∣∣∣2

∣∣∣E (s)
i

∣∣∣2 = |rs |2 and Rp ≡ P (p)
r

P (p)
i

= I (p)
r

I (p)
i

=

∣∣∣E (p)
r

∣∣∣2

∣∣∣E (p)
i

∣∣∣2 = ∣∣rp
∣∣2

(3.26)
The total reflected intensity is therefore

Ir = I (s)
r + I (p)

r = Rs I (s)
i +Rp I (p)

i (3.27)

where, according to (2.62), the total incident intensity is given by

Ii = I (s)
i + I (p)

i = 1

2
ni ϵ0c

[∣∣∣E (s)
i

∣∣∣2 +
∣∣∣E (p)

i

∣∣∣2
]

(3.28)

From (3.25) and (3.26), the transmitted power is

P (s)
t = P (s)

i −P (s)
r = (1−Rs)P (s)

i and P (p)
t = P (p)

i −P (p)
r = (

1−Rp
)

P (p)

i (3.29)

From this expression we see that the fraction of the power that transmits, called
the transmittance, is

Ts ≡
P (s)

t

P (s)
i

= 1−Rs and Tp ≡ P (p)
t

P (p)
i

= 1−Rp (3.30)

Figure 3.4 shows typical reflectance and transmittance values for an air-glass
interface.
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Figure 3.4 The reflectance and
transmittance plotted versus θi for
the case of an air-glass interface
with ni = 1 and nt = 1.5.You might be surprised at first to learn that

Ts ̸= |ts |2 and Tp ̸= ∣∣tp
∣∣2 (3.31)

However, recall that the transmitted intensity (in terms of the transmitted fields)
depends also on the refractive index. The Fresnel coefficients ts and tp relate the
bare electric fields to each other, whereas the transmitted intensity is

It = I (s)
t + I (p)

t = 1

2
ntϵ0c

[∣∣∣E (s)
t

∣∣∣2 +
∣∣∣E (p)

t

∣∣∣2
]

(3.32)

In view of (3.28) and (3.32), we expect Ts and Tp to depend on the ratio of the

refractive indices nt and ni in addition to |ts |2 or
∣∣tp

∣∣2.

  

  

Figure 3.5 Light refracting into a
surface

There is another more subtle reason for the inequalities in (3.31). Consider
a lateral strip of light associated with a plane wave incident upon the material
interface in Fig. 3.5. Upon refraction into the second medium, the strip is seen to
change its width by the factor cosθt

/
cosθi . This is a purely geometrical effect,

owing to the change in propagation direction at the interface. Since power is
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intensity times area, the transmittance picks up this geometrical factor via the
ratio of the areas At

/
Ai as follows:

Ts ≡
P (s)

t

P (s)
i

= I (s)
t At

I (s)
i Ai

= nt cosθt

ni cosθi
|ts |2

Tp ≡ P (p)
t

P (p)
i

= I (p)
t At

I (p)
i Ai

= nt cosθt

ni cosθi

∣∣tp
∣∣2

(not valid if total internal reflection) (3.33)

Note that (3.33) is valid only if a real angle θt exists; it does not hold when the
incident angle exceeds the critical angle for total internal reflection, discussed in
section 3.5. In that situation, we must stick with (3.30).

Example 3.2

Show analytically that Rp +Tp = 1, where Rp is given by (3.26) and Tp is given by
(3.33).

Solution: From (3.22) we have

Rp =
∣∣∣∣ni cosθt −nt cosθi

ni cosθt +nt cosθi

∣∣∣∣2

= n2
i cos2θt −2ni nt cosθi cosθt +n2

i cos2θi

(ni cosθt +nt cosθi )2

From (3.23) and (3.33) we have

Tp = nt cosθt

ni cosθi

∣∣∣∣ 2ni cosθi

ni cosθt +nt cosθi

∣∣∣∣2

= 4ni nt cosθi cosθt

(ni cosθt +nt cosθi )2

Then

Rp +Tp = n2
i cos2θt +2ni nt cosθi cosθt +n2

i cos2θi

(ni cosθt +nt cosθi )2

= (ni cosθt +nt cosθi )2

(ni cosθt +nt cosθi )2 = 1

3.4 Brewster’s Angle

David Brewster (1781–1868, Scottish)
was born in Jedburgh, Scotland. His
father was a teacher and wanted David
to become a clergyman. At age twelve,
David went to the University of Edin-
burgh for that purpose, but his inclination
for natural science soon became ap-
parent. He became licensed to preach,
but his interests in science distracted
him from that profession, and he spent
much of his time studying diffraction.
Taking an empirical approach, Brewster
independently discovered many of the
same things usually credited to Fresnel.
He even made a dioptric apparatus for
lighthouses before Fresnel developed
his. Brewster became somewhat famous
in his day for the development of the
kaleidoscope and stereoscope for en-
joyment by the general public. Brewster
was a prolific science writer and editor
throughout his life. Among his works is
an important biography of Isaac Newton.
He was knighted for his accomplish-
ments in 1831. (Wikipedia)

Notice rp and Rp go to zero at a certain angle in Figs. 3.3 and 3.4, indicating that
no p-polarized light is reflected at this angle. This behavior is quite general, as
we can see from the final form of the Fresnel coefficient formula for rp in (3.22),
which has tan(θi +θt ) in the denominator. Since the tangent ‘blows up’ at π/2,
the reflection coefficient goes to zero when

θi +θt = π

2
(requirement for zero p-polarized reflection) (3.34)

https://en.wikipedia.org/wiki/David_Brewster
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By inspecting Fig. 3.1, we see that this condition occurs when the reflected and
transmitted wave vectors, kr and kt , are perpendicular to each other (see also
Fig. 3.6). If we insert (3.34) into Snell’s law (3.7), we can solve for the incident
angle θi that gives rise to this special circumstance:

ni sinθi = nt sin
(π

2
−θi

)
= nt cosθi (3.35)

    

100% p-transmission

completely
s-polarized
reflection

Figure 3.6 Brewster’s angle coin-
cides with the situation where kr

and kt are perpendicular.

The angle that satisfies this equation, in terms of the refractive indices, is
readily found to be

θB = tan−1 nt

ni
(3.36)

We have replaced the specific θi with θB in honor of Sir David Brewster who first
discovered the phenomenon. The angle θB is called Brewster’s angle. At Brewster’s
angle, no p-polarized light reflects (see L 3.4). Physically, the p-polarized light
cannot reflect because kr and kt are perpendicular. A reflection would require the
microscopic dipoles at the surface of the second material to radiate along their
axes, which they cannot do (see Fig. 3.7). Maxwell’s equations ‘know’ about this,
and so everything is nicely consistent.

0

180

90270

Oscillating
Dipole

Figure 3.7 The intensity radiation
pattern of an oscillating dipole as
a function of angle. Note that the
dipole does not radiate along the
axis of oscillation, giving rise to
Brewster’s angle for reflection.

3.5 Total Internal Reflection

From Snell’s law (3.7), we can compute the transmitted angle in terms of the
incident angle:

θt = sin−1
(

ni

nt
sinθi

)
(3.37)

The angle θt is real only if the argument of the inverse sine is less than or equal to
one. If ni > nt , we can find a critical angle beyond which the argument begins to
exceed one:

θc ≡ sin−1 nt

ni
(3.38)

When θi > θc, then there is total internal reflection and we can directly show that
Rs = 1 and Rp = 1 (see P3.9).5 To demonstrate this, one computes the Fresnel
coefficients (3.20) and (3.22) while employing the following substitution:

cosθt =
√

1− sin2θt = i

√√√√n2
i

n2
t

sin2θi −1 (θi > θc) (3.39)

(see P0.19).
In this case, θt is a complex number. However, we do not assign geometrical

significance to it in terms of any direction. Actually, we don’t even need to know
the value for θt ; we need only the values for sinθt and cosθt , as specified by
Snell’s law (3.7) and (3.39). Even though sinθt is greater than one and cosθt

5M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 1.5.4 (Cambridge University Press, 1999).
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is imaginary, we can use their values to compute rs , rp , ts , and tp . (Complex
notation is wonderful!)

Upon substitution of (3.39) into the Fresnel reflection coefficients (3.20) and
(3.22) we obtain

rs =
ni cosθi − i nt

√
n2

i

n2
t

sin2θi −1

ni cosθi + i nt

√
n2

i

n2
t

sin2θi −1

(θi > θc) (3.40)

and

rp =−
nt cosθi − i ni

√
n2

i

n2
t

sin2θi −1

nt cosθi + i ni

√
n2

i

n2
t

sin2θi −1

(θi > θc) (3.41)

These Fresnel coefficients can be manipulated (see P3.9) into the forms

rs = exp

−2i tan−1

 nt

ni cosθi

√√√√n2
i

n2
t

sin2θi −1

 (θi > θc) (3.42)

and

rp =−exp

−2i tan−1

 ni

nt cosθi

√√√√n2
i

n2
t

sin2θi −1

 (θi > θc) (3.43)

Each coefficient has a different phase (note ni
/

nt vs. nt
/

ni in the expressions),
which means that the s- and p-polarized fields experience different phase shifts
upon reflection. Nevertheless, we definitely have |rs | = 1 and

∣∣rp
∣∣= 1. We rightly

conclude that 100% of the light reflects. The transmittance is zero as dictated by
(3.30). We emphasize that one should not employ (3.32) or (3.33) in the case of
total internal reflection, as the imaginary θt makes the geometric factor in this
equation invalid.

Figure 3.8 Animation of light
waves incident on an interface
both below and beyond the critical
angle.

Even with zero transmittance, the boundary conditions from Maxwell’s equa-
tions (as worked out in appendix 3.A) require that the fields be nonzero on the
transmitted side of the boundary, meaning ts ̸= 0 and tp ̸= 0. While this situation
may seem like a contradiction at first, it is an accurate description of what actually
happens. The coefficients ts and tp characterize evanescent waves that exist on
the transmitted side of the interface. The evanescent wave travels parallel to the
interface so that no energy is conveyed away from the interface deeper into the
medium on the transmission side.

Incident
Wave Evanescent 

Wave

Figure 3.9 A wave experiencing
total internal reflection creates
an evanescent wave that propa-
gates parallel to the interface. (The
reflected wave is not shown.)

To compute the explicit form of the evanescent wave,6 we plug (3.39) as well
as Snell’s law into the transmitted field (3.2):

6G. R. Fowles, Introduction to Modern Optics, 2nd ed., Sect 2.9 (New York: Dover, 1975).

https://vimeo.com/717105894
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Et =
[

E (p)
t

(
ŷcosθt − ẑsinθt

)+ x̂E (s)
t

]
e i[kt (y sinθt+z cosθt )−ωt]

=
tp E (p)

i

ŷi

√√√√n2
i

n2
t

sin2θi −1− ẑ
ni

nt
sinθi

+ x̂ts E (s)
i

e
−kt z

√
n2

i
n2

t
sin2 θi−1

e
i
[

kt y
ni
nt

sinθi−ωt
]

(3.44)

Figure 3.9 plots the evanescent wave described by (3.44) along with the associ-
ated incident wave. The phase of the evanescent wave indicates that it propagates
parallel to the boundary (in the y-dimension). Its strength decays exponentially
away from the boundary (in the z-dimension). We leave the calculation of ts and
tp as an exercise (P3.10).

3.6 Reflections from Metal

p

p
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Figure 3.10 The reflectances (top)
with associated phases (bottom)
for silver, which has index n = 0.13
and κ= 4.0 near λ= 633 nm. Note
the minimum of Rp corresponding
to a kind of Brewster’s angle.

In this section we generalize our analysis to materials with complex refractive
index N ≡ n + iκ. As a reminder, the imaginary part of the index controls atten-
uation of a wave as it propagates within a material. The real part of the index
governs the oscillatory nature of the wave. It turns out that both the imaginary
and real parts of the index strongly influence the reflection of light from a sur-
face. The reader may be grateful that there is no need to re-derive the Fresnel
coefficients (3.20)–(3.23) for the case of complex indices. The coefficients remain
valid whether the index is real or complex – just replace the real index n with the
complex index N . However, we do need to be a bit careful when applying them.

We restrict our discussion to reflections from a metallic or other absorbing
material surface. As we found in the case of total internal reflection, we actually
do not need to know the transmitted angle θt to employ Fresnel reflection coef-
ficients (3.20) and (3.22). We need only acquire expressions for cosθt and sinθt ,
and we can obtain those from Snell’s law (3.7). To minimize complications, we
let the incident refractive index be ni = 1 (which is often the case). Let the index
on the transmitted side be written as Nt =N . Then by Snell’s law, the sine of the
transmitted angle is

sinθt = sinθi

N
(3.45)

This expression is of course complex since N is complex, which is just fine.7 The
cosine of the same angle is

cosθt =
√

1− sin2θt = 1

N

√
N 2 − sin2θi (3.46)

The positive sign in front of the square root is appropriate since it is clearly the
right choice if the imaginary part of the index approaches zero.

7See M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 14.2 (Cambridge University Press,
1999).
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Upon substitution of these expressions, the Fresnel reflection coefficients
(3.20) and (3.22) become

rs = cosθi −
√

N 2 − sin2θi

cosθi +
√

N 2 − sin2θi

(3.47)

and

rp =
√

N 2 − sin2θi −N 2 cosθi√
N 2 − sin2θi +N 2 cosθi

(3.48)

These expressions are tedious to evaluate. When evaluating the expressions, it is
usually desirable to put them into the form

rs = |rs |e iφs (3.49)

and
rp = ∣∣rp

∣∣e iφp (3.50)

We refrain from putting (3.47) and (3.48) into this form using the general ex-
pressions; we would get a big mess. It is a good idea to let your calculator or
a computer do it after a specific value for N ≡ n + iκ is chosen. An important
point to notice is that the phases upon reflection can be very different for s and
p-polarization components (i.e. φp and φs can be very different). This is true in
general, even when the reflectivity is high (i.e. |rs | and

∣∣rp
∣∣ on the order of unity).

Brewster’s angle exists also for surfaces with complex refractive index. How-
ever, in general the expressions (3.48) and (3.50) do not go to zero at any incident
angle θi . Rather, the reflection of p-polarized light can go through a minimum at
some angle θi , which we refer to as Brewster’s angle (see Fig. 3.10). This minimum
is best found numerically since the general expression for

∣∣rp
∣∣ in terms of n and κ

and as a function of θi can be unwieldy.

Appendix 3.A Boundary Conditions For Fields at an Inter-
face

We are interested in the continuity of fields across a boundary from one medium
with index n1 to another medium with index n2. We will show that the compo-
nents of electric field and the magnetic field parallel to the interface surface must
be the same on either side (adjacent to the interface). This result is independent
of the refractive index of the materials; in the case of the magnetic field we assume
the permeability µ0 is the same on both sides. To derive the boundary conditions,
we consider a surface S (a rectangle) that is perpendicular to the interface between
the two media and which extends into both media, as depicted in Fig. 3.11.

First we examine the integral form of Faraday’s law (1.14)∮
C

E ·dℓ=− ∂

∂t

∫
S

B · n̂ d a (3.51)
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applied to the rectangular contour depicted in Fig. 3.11. We perform the path
integration on the left-hand side around the loop as follows:∮

E ·dℓ= E 1||d −E1⊥ℓ1 −E2⊥ℓ2 −E 2||d +E2⊥ℓ2 +E1⊥ℓ1 =
(
E 1||−E 2||

)
d (3.52)

Here, E 1|| refers to the component of the electric field in the material with index
n1 that is parallel to the interface. E1⊥ refers to the component of the electric field
in the material with index n1 which is perpendicular to the interface. Similarly,
E 2|| and E2⊥ are the parallel and perpendicular components of the electric field
in the material with index n2. We have assumed that the rectangle is small enough
that the fields are uniform within the half rectangle on either side of the boundary.

  

d

d

S

Figure 3.11 Interface of two mate-
rials.

Next, we shrink the loop down until it has zero surface area by letting the
lengths ℓ1 and ℓ2 go to zero. In this situation, the right-hand side of Faraday’s law
(3.51) goes to zero ∫

S

B · n̂ d a → 0 (3.53)

and we are left with
E 1|| = E 2|| (3.54)

This simple relation is a general boundary condition, which is met at any material
interface. The component of the electric field that lies in the plane of the interface
must be the same on both sides of the interface.

We now derive a similar boundary condition for the magnetic field using the
integral form of Ampere’s law:8∮

C

B ·dℓ=µ0

∫
S

(
J+ϵ0

∂E

∂t

)
· n̂ d a (3.55)

As before, we are able to perform the path integration on the left-hand side for
the geometry depicted in the figure, which gives∮

B ·dℓ= B 1||d −B1⊥ℓ1−B2⊥ℓ2−B 2||d +B2⊥ℓ2+B1⊥ℓ1 =
(
B 1||−B 2||

)
d (3.56)

The notation for parallel and perpendicular components on either side of the
interface is similar to that used in (3.52).

Again, we can shrink the loop down until it has zero surface area by letting the
lengths ℓ1 and ℓ2 go to zero. In this situation, the right-hand side of (3.55) goes to
zero (ignoring the possibility of surface currents):∫

S

(
J+ϵ0

∂E

∂t

)
· n̂ d a → 0 (3.57)

and we are left with
B 1|| = B 2|| (3.58)

This is a general boundary condition that must be satisfied at the material inter-
face.

8This form can be obtained from (1.4) by integration over the surface S in Fig. 3.11 and applying
Stokes’ theorem (0.12) to the magnetic field term.
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Exercises

Exercises for 3.2 The Fresnel Coefficients

P3.1 Derive the Fresnel coefficients (3.22) and (3.23) for p-polarized light.

P3.2 Verify that each of the alternative forms given in (3.20)–(3.23) are equiv-
alent. Show that at normal incidence (i.e. θi = θt = 0) the Fresnel
coefficients reduce to

lim
θi→0

rs = lim
θi→0

rp =−nt −ni

nt +ni
and lim

θi→0
ts = lim

θi→0
tp = 2ni

nt +ni

HINT: Substitute from Snell’s law.

P3.3 Use a computer to make a plot similar to Fig. 3.3 of rp , tp , rs , ts as a
function of the incident angle for an air-diamond interface. Use ni = 1
for air and nt = 2.42 for diamond. Note Brewster’s angle where rp goes
through zero.

Exercises for 3.3 Reflectance and Transmittance

L3.4 (a) In the laboratory, measure the reflectance for both s and p polarized
light from a flat glass surface at about ten angles. Especially watch for
Brewster’s angle (described in section 3.4). You can normalize the
detector by measuring the beam before the glass surface. Figure 3.12
illustrates the experimental setup. (video)

High sensitivity
detector

Slide detector
with the beam

Laser

Polarizer

Uncoated glass
on rotation stage

Figure 3.12 Experimental setup for lab 3.4.

(b) Use a computer to calculate the theoretical air-to-glass reflectance
as a function of incident angle (i.e. plot Rs and Rp as a function of θi ).
Take the index of refraction for glass to be nt = 1.54 and the index for
air to be one. Plot this theoretical calculation as a smooth line on a
graph. Plot your experimental data from (a) as points on this same
graph (not points connected by lines).

https://vimeo.com/717097138
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P3.5 A pentaprism is a five-sided reflecting prism used to deviate a beam of
light by 90◦ without inverting an image (see Fig. 3.13). Pentaprisms are
used in the viewfinders of SLR cameras.

Figure 3.13

(a) What prism angle β is required for a normal-incidence beam from
the left to exit the bottom surface at normal incidence?

(b) If all interfaces of the pentaprism are uncoated glass with index
n = 1.5, what fraction of the intensity would get through this system for
a normal incidence beam? Compute for p-polarized light, and include
transmission through the first and final surfaces as well as reflection at
the two interior surfaces.

NOTE: You will find that the overall transmission through the device is
very poor. The reflecting surfaces on pentaprisms are usually treated
with a high-reflection coating and the transmitting surfaces are treated
with anti-reflection coatings.

P3.6 (a) Show analytically for s-polarized light that Rs +Ts = 1, where Rs is
given by (3.26) and Ts is given by (3.33).

(b) Repeat for p-polarized light.

Exercises for 3.4 Brewster’s Angle

P3.7 (a) Find Brewster’s angle for an air-glass interface with nglass = 1.5.

(b) Compute Rs and Rp at this angle.

Exercises for 3.5 Total Internal Reflection

P3.8 Diamonds have an index of refraction of n = 2.42 which allows total in-
ternal reflection to occur at relatively shallow angles of incidence. Gem
cutters choose facet angles that ensure most of the light entering the
top of the diamond will reflect back out to give the stone its expensive
sparkle. One such cut, the “Eulitz Brilliant" cut, is shown in Fig. 3.14.

Figure 3.14 A Eulitz Brilliant cut
diamond.

(a) What is the critical angle for diamond?

(b) What fraction of the light reflects for internal angles θi = 40.5◦ and
θi = 50.6◦? One way to spot a fake diamond is by noticing reduced
brilliance in the sparkle. Are these angles both beyond the critical
angle for fused quartz (n = 1.46)?

(c) For each angle and assuming s-polarized light, find the phase shift
upon reflection φs where rs = |rs |e iφs .

P3.9 Derive (3.42) and (3.43) and show that Rs = 1 and Rp = 1. HINT: See
problem P0.15.
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P3.10 Develop expressions for ts and tp in terms of θi and the refractive
indices in the case of total internal reflection. Put your answer in polar
form (i.e. t = |t |e iφ).

P3.11 Use a computer to plot the air-to-water transmittance (both Ts and Tp )
as a function of incident angle (i.e. plot (3.30) as a function of θi ). On a
separate graph, plot the water-to-air transmittance. Take the index of
air to be one; the index of refraction for water is n = 1.33.

P3.12 Light (λvac = 500 nm) reflects internally from a glass surface (n = 1.5)
surrounded by air. The incident angle is θi = 45◦. An evanescent wave
travels parallel to the surface on the air side. At what distance from the
surface is the amplitude of the evanescent wave 1/e of its value at the
surface?

Exercises for 3.6 Reflections from Metal

p

s

80

Figure 3.15 Geometry for P3.13

P3.13 The complex index for silver is given by n = 0.13 and κ= 4.0.9 Find rs

and rp when reflecting at θi = 80◦ and put them into the forms (3.49)
and (3.50). Assume the light propagates in vacuum on the incident
side.
Answer: rs = 0.997e−i 3.057, rp = 0.969e−i 1.187

P3.14 (a) Using a computer, plot Rs , Rp versus θi for silver (n = 0.13 and
κ= 4.0). Make a separate plot of the phases φs and φp from (3.49) and
(3.50). Clearly label each plot.

(b) Can you identify Brewster’s angle (i.e. where Rp is minimum)?

9Handbook of Optical Constants of Solids, Edited by E. D. Palik (Elsevier, 1997).



Chapter 4

Multiple Parallel Interfaces

In chapter 3, we studied the transmission and reflection of light at a single in-
terface between two (isotropic homogeneous) materials with indices ni and nt .
We found that the percent of light reflected versus transmitted depends on the
incident angle and on whether the light is s- or p-polarized. The Fresnel coef-
ficients rs , ts , rp , tp (3.20)–(3.23) connect the reflected and transmitted fields to
the incident field. Similarly, either Rs and Ts or Rp and Tp determine the fraction
of incident power that either reflects or transmits (see (3.26) and (3.30)).

In this chapter we consider the overall transmission and reflection through
multiple parallel interfaces. We start with a two-interface system, where a layer of
material is inserted between the initial and final materials. This situation occurs
frequently in optics. For example, lenses are often coated with a thin layer of
material in an effort to reduce reflections. Metal mirrors usually have a thin oxide
layer or a protective coating between the metal and the air. We can develop
reflection and transmission coefficients r tot and t tot, which apply to the overall
double-boundary system, similar to the Fresnel coefficients for a single boundary.
Likewise, we can compute an overall reflectance and transmittance R tot and T tot.
These can be used to compute the ‘tunneling’ of evanescent waves across a gap
between two parallel surfaces when the critical angle for total internal reflection
is exceeded.

The formalism we develop for the double-boundary problem is useful for
describing a simple instrument called a Fabry-Perot etalon (or interferometer if
the instrument has the capability of variable spacing between the two surfaces).
Such an instrument, which is constructed from two partially reflective parallel
surfaces, is useful for distinguishing closely spaced wavelengths.

Finally, in this chapter we will extend our analysis to multilayer coatings,
where an arbitrary number of interfaces exist between many material layers.
Multilayers are often used to make highly reflective mirror coatings from dielectric
materials (as opposed to metallic materials). Such mirror coatings can reflect
with efficiencies greater than 99.9% at specified wavelengths. In contrast, metallic
mirrors typically reflect with ∼ 96% efficiency, which can be a significant loss
if there are many mirrors in an optical system. Dielectric multilayer coatings

89



90 Chapter 4 Multiple Parallel Interfaces

also have the advantage of being more durable and less prone to damage from
high-intensity lasers.

4.1 Double-Interface Problem Solved Using Fresnel Coeffi-
cients

Consider a slab of material sandwiched between two other materials as depicted
in Fig. 4.1. Because there are multiple reflections inside the middle layer, we have
dropped the subscripts i, r, and t used in chapter 3 and instead use the symbols
� and � to indicate forward and backward traveling waves, respectively. Let n1

stand for the refractive index of the middle layer. For consistency with notation
that we will later use for many-layer systems, let n0 and n2 represent the indices
of the other two regions. For simplicity, we assume that indices are real. As with
the single-boundary problem, we are interested in finding the overall transmitted
fields E (s)

2� and E (p)
2� and the overall reflected fields E (s)

0� and E (p)
0� in terms of the

incident fields E (s)
0� and E (p)

0�.
Both forward and backward traveling plane waves exist in the middle region.

Our intuition rightly tells us that in this region there are many reflections, bounc-
ing both forward and backward between the two surfaces. It might therefore seem
that we need to keep track of an infinite number of plane waves, each correspond-
ing to a different number of bounces. Fortunately, the many forward-traveling
plane waves all travel in the same direction. Similarly, the backward-traveling
plane waves are all parallel. These plane-wave fields then join neatly into a single
net forward-moving and a single net backward-moving plane wave within the

    

  

  

  
  

  

  

  

    

  

x-axis
directed into page

Figure 4.1 Waves propagating through a dual interface between materials.
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middle region.1

As of yet, we do not know the amplitudes or phases of the net forward and net
backward traveling plane waves in the middle layer. We denote them by E (s)

1� and
E (s)

1� or by E (p)
1� and E (p)

1�, separated into their s and p components as usual. Similarly,
E (s)

0� and E (p)
0� as well as E (s)

2� and E (p)
2� are understood to include light that ‘leaks’

through the boundaries from the middle region. Thus, we need only concern
ourselves with the five plane waves depicted in Fig. 4.1.

The various plane-wave fields are connected to each other at the boundaries
via the single-boundary Fresnel coefficients (3.20)–(3.23). At the first surface we
define

r 0�1
s ≡ sinθ1 cosθ0 − sinθ0 cosθ1

sinθ1 cosθ0 + sinθ0 cosθ1
r 0�1

p ≡ sinθ1 cosθ1 − sinθ0 cosθ0

sinθ1 cosθ1 + sinθ0 cosθ0

t 0�1
s ≡ 2sinθ1 cosθ0

sinθ1 cosθ0 + sinθ0 cosθ1
t 0�1

p ≡ 2sinθ1 cosθ0

sinθ1 cosθ1 + sinθ0 cosθ0

(4.1)

The notation 0 � 1 indicates the first surface from the perspective of starting
on the incident side and propagating towards the middle layer. The Fresnel
coefficients for the backward traveling light approaching the first interface from
within the middle layer are given by

r 0�1
s =−r 0�1

s r 0�1
p =−r 0�1

p

t 0�1
s ≡ 2sinθ0 cosθ1

sinθ0 cosθ1 + sinθ1 cosθ0
t 0�1

p ≡ 2sinθ0 cosθ1

sinθ0 cosθ0 + sinθ1 cosθ1

(4.2)

where 0 � 1 indicates connections at the first interface, but from the perspective
of beginning inside the middle layer. Finally, the single-boundary coefficients for
light approaching the second interface are

r 1�2
s ≡ sinθ2 cosθ1 − sinθ1 cosθ2

sinθ2 cosθ1 + sinθ1 cosθ2
r 1�2

p ≡ sinθ2 cosθ2 − sinθ1 cosθ1

sinθ2 cosθ2 + sinθ1 cosθ1

t 1�2
s ≡ 2sinθ2 cosθ1

sinθ2 cosθ1 + sinθ1 cosθ2
t 1�2

p ≡ 2sinθ2 cosθ1

sinθ2 cosθ2 + sinθ1 cosθ1

(4.3)

In a similar fashion, the notation 1 � 2 indicates connections made at the second
interface from the perspective of beginning in the middle layer.

To solve for the connections between the five fields depicted in Fig.4.1, we
will need four equations for either s or p polarization (taking the incident field as
a given). To simplify things, we will consider s-polarized light in the upcoming
analysis. The equations for p-polarized light look exactly the same; just replace
the subscript s with p. Through the remainder of this section and the next, we
will continue to economize by writing the equations only for s-polarized light
with the understanding that they apply equally well to p-polarized light.

The forward-traveling wave in the middle region arises from both a transmis-
sion of the incident wave and a reflection of the backward-traveling wave in the

1The sum of parallel plane waves
∑

j E j ei (k·r−ωt ), where the phase of each wave is contained in

E j , can be written as (
∑

j E j )ei (k·r−ωt ), which is effectively one plane wave.



92 Chapter 4 Multiple Parallel Interfaces

middle region at the first interface. Using the Fresnel coefficients, we can write
E (s)

1� as the sum of fields arising from E (s)
0� and E (s)

1� as follows:

E (s)
1� = t 0�1

s E (s)
0� + r 0�1

s E (s)
1� (4.4)

The factor t 0�1
s and r 0�1

s are the single-boundary Fresnel coefficients selected from
(4.1). Similarly, the overall reflected field E (s)

0�, is given by the reflection of the
incident field and the transmission of the backward-traveling field in the middle
region according to

E (s)
0� = r 0�1

s E (s)
0� + t 0�1

s E (s)
1� (4.5)

Two connections made; two to go.
Before we continue, we need to specify an origin so that we can calculate

phase shifts associated with propagation in the middle region. Propagation was
not an issue in the single-boundary problem studied back in chapter 3. However,
in the double-boundary problem, the thickness of the middle region dictates
phase variations that strongly influence the result. We take the origin to be
located on the first interface, as shown in Fig. 4.1. Since all fields in (4.4) and (4.5)
are evaluated at the origin (y, z) = (0,0), there were no phase factors needed.

We will connect the plane-wave fields across the second interface at the point
r = ẑd . The appropriate phase-adjusted2 field at (y, z) = (0,d) is E (s)

1�e i k1�·r =
E (s)

1�e i k1d cosθ1 , since E (s)
1� is the field at the origin (y, z) = (0,0). The transmitted

field in the final medium arises only from the forward-traveling field in the middle
region, and at our selected point it is

E (s)
2� = t 1�2

s E (s)
1�e i k1d cosθ1 (4.6)

Note that E (s)
2� stand for the transmitted field at the point (y, z) = (0,d); its local

phase can be built into its definition so no need to write an explicit phase.
The backward-traveling plane wave in the middle region arises from the

reflection of the forward-traveling plane wave in that region:

E (s)
1� = E (s)

1�e i k1d cosθ1 r 1�2
s e i k1d cosθ1 (4.7)

We have written the phase terms on the right of (4.7) in a long form to empha-
size that they describe a transmission through the middle layer, followed by a
reflection from the second interface, and then another transmission through the
middle layer back to the first interface.

The relations (4.4)–(4.7) permit us to find overall transmission and reflection
coefficients for the two-interface problem.

Example 4.1

Derive the transmission coefficient that connects the final transmitted field to the
incident field for the double-interface problem according to t tot

s ≡ E (s)
2�/E (s)

0� .

2In the middle region, k1� = k1
(
ŷsinθ1 + ẑcosθ1

)
and k1� = k1

(
ŷsinθ1 − ẑcosθ1

)
.
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Solution: From (4.6) we may write

E (s)
1� = E (s)

2�

t 1�2
s

e−i k1d cosθ1 (4.8)

Substitution of this into (4.7) gives

E (s)
1� = E (s)

2�

r 1�2
s

t 1�2
s

e i k1d cosθ1 (4.9)

Next, substituting both (4.8) and (4.9) into (4.4) yields the connection we seek
between the incident and transmitted fields:

E (s)
2�

t 1�2
s

e−i k1d cosθ1 = t 0�1
s E (s)

0� + r 0�1
s E (s)

2�

r 1�2
s

t 1�2
s

e i k1d cosθ1 (4.10)

After rearranging, we arrive at the more useful form

t tot
s ≡ E (s)

2�

E (s)
0�

= t 0�1
s e i k1d cosθ1 t 1�2

s

1− r 0�1
s r 1�2

s e2i k1d cosθ1
(p can be switched for s)(4.11)

The coefficient t tot
s derived in Example 4.1 connects the amplitude and phase

of the incident field to the amplitude and phase of the transmitted field in a
manner similar to the single-boundary Fresnel coefficients. The numerator of
(4.11) reminds us of the physics of the situation: the field transmits through the
first interface, acquires a phase due to propagating through the middle layer, and
then transmits through the second interface. The denominator of (4.11) modifies
the result to account for feedback from multiple reflections in the middle region.3

The overall reflection coefficient is found to be (see P4.1)

r tot
s ≡ E (s)

0�

E (s)
0�

= r 0�1
s + t 0�1

s e i k1d cosθ1 r 1�2
s e i k1d cosθ1 t 0�1

s

1− r 0�1
s r 1�2

s e i 2k1d cosθ1
(can switch p for s) (4.12)

The initial reflection from the first interface is described by the first term r 0�1
s .

The numerator in (4.12) can be simplified algebraically, but we have left it in this
longer form to emphasize the physics of the situation: light transmits through
the first interface, propagates through the middle layer, reflects from the second
interface, propagates back through the middle layer, and transmits back through
the first interface to interfere with the initial reflection. The denominator of the
second term accounts for the effects of multiple-reflection feedback.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Figure 4.2 Plots of the magni-
tudes of the overall reflection
and transmission coefficients
for a quarter-wave thickness
(k1d = π/2) of MgF2 (n1 = 1.38)
on glass (n2 = 1.5) in air (n0 = 1).

Figure 4.2 shows the magnitudes of the overall reflection and transmission co-
efficients for the case of a quarter-wave thickness coating of magnesium fluoride
on glass with k1d =π/2. This coating is meant to reduce reflections by having the
initial reflection described by the first term in (4.12) and the secondary reflection
described by the second term add out of phase (i.e. have a relative phase shift of

3Our derivation method avoids the need for explicit accounting of multiple reflections. For an
alternative approach arriving at the same result via an infinite geometric series, see M. Born and E.
Wolf, Principles of Optics, 7th ed., Sect. 7.6.1 (Cambridge University Press, 1999) or G. R. Fowles,
Introduction to Modern Optics, 2nd ed., Sect 4.1 (New York: Dover, 1975).



94 Chapter 4 Multiple Parallel Interfaces

π). While this coating reduces the overall reflection as compared to an uncoated
optic, note that it does not eliminate the reflection because the two interfering
plane waves have different amplitudes. Figure 4.3 shows the phase of the overall
reflection and transmission coefficients, written in the form r tot

s = |r tot
s |e iφrs . At

high incidence angles the s- and p-polarization reflection coefficients experience
markedly different phase shifts.

0 20 40 60 80

-

-0.5

0

0.5

Figure 4.3 Plots of the phases of
the overall reflection and transmis-
sion coefficients for a quarter-
wave thickness (k1d = π/2)
of MgF2 (n1 = 1.38) on glass
(n2 = 1.5) in air (n0 = 1).

4.2 Transmittance through Double Interface at Subcritical
Angles

We are now in a position to calculate the fraction of power that transmits through
or reflects from a double-interface arrangement. Because the transmission coeffi-
cient (4.11) has a simpler form than the reflection coefficient (4.12), it is easier to
calculate the total transmittance T tot

s and obtain the reflectance, if desired, from
the relationship (see (3.30))

T tot
s +R tot

s = 1 (4.13)

When the transmitted angle θ2 is real (i.e. θ1 does not exceed the critical
angle), we may write the fraction of the transmitted power as in (3.33):

T tot
s = n2 cosθ2

n0 cosθ0

∣∣t tot
s

∣∣2

= n2 cosθ2

n0 cosθ0

∣∣t 0�1
s

∣∣2 ∣∣t 1�2
s

∣∣2∣∣e−i k1d cosθ1 − r 0�1
s r 1�2

s e i k1d cosθ1
∣∣2

(p can be switched for s) (θ2 real) (4.14)

Note that we multiplied the numerator and denominator of (4.11) by e−i k1d cosθ1

before inserting it into (4.14), which make the denominator more symmetric for
later convenience.

When θ1 is also real (i.e. θ0 also does not exceed the critical angle), we can
simplify (4.14) into the following useful form (see P4.3):4

T tot
s = T max

s

1+Fs sin2
(
Φs
2

)(p can be switched for s) (θ1 and θ2 real) (4.15)

where

T max
s ≡ T 0�1

s T 1�2
s(

1−√
R0�1

s R1�2
s

)2 (4.16)

Φs ≡ 2k1d cosθ1 +φr 0�1
s

+φr 1�2
s

(4.17)

and

Fs ≡
4
√

R0�1
s R1�2

s(
1−√

R0�1
s R1�2

s

)2 (4.18)

4M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 7.6.1 (Cambridge University Press, 1999).
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The quantity T max
s is the maximum possible transmittance of power through the

two surfaces. The single-interface transmittances (T 0�1
s and T 1�2

s ) and reflectances
(R0�1

s and R1�2
s ) are calculated from the single-interface Fresnel coefficients in

the usual way as described in chapter 3. The numerator of T max
s represents the

combined transmittances for the two interfaces without considering feedback
due to multiple reflections. The denominator enhances this value to account for
reinforcing feedback in the middle layer.

The exact argument of the sine function, Φs , can strongly influence the trans-
mission. The term 2k1d cosθ1 represents the phase delay acquired during round-
trip propagation in the middle region. The terms φr 0�1

s
and φr 1�2

s
account for

possible phase shifts upon reflection from each interface. They are defined in-
directly by writing the single-boundary Fresnel reflection coefficients in polar
format:

r 0�1
s = ∣∣r 0�1

s

∣∣e
iφr 0�1

s and r 1�2
s = ∣∣r 1�2

s

∣∣e
iφr 1�2

s (4.19)

If the indices of refraction in all regions are real, φr 0�1
s

and φr 1�2
s

take on values of
either zero or π (i.e. the coefficients are positive or negative real numbers). When
the indices are complex, other phase values are possible.

Fs is called the coefficient of finesse, which determines how strongly the trans-
mittance is influenced whenΦs is varied (for example, through varying d or the
wavelength λvac).

Partial 
reflection 
coating

Anti-reflection 
coating

Glass

46%

54%

Figure 4.4 Side view of a beam-
splitter.

Example 4.2

Consider a ‘beam splitter’ designed for s-polarized light incident on a substrate of
glass (n = 1.5) at 45◦ as shown in Fig. 4.4. A thin coating of zinc sulfide (n = 2.32)
is applied to the front of the glass to cause about half of the light to reflect. A
magnesium fluoride (n = 1.38) coating is applied to the back surface of the glass to
minimize reflections at that surface.5 Each coating constitutes a separate double-
interface problem. The front coating is deferred to problem P4.5. In this example,
find the highest transmittance possible through the antireflection film at the back
of the ‘beam splitter’ and the smallest possible d̃ that accomplishes this for light
with wavelength λvac = 633 nm.

Solution: For the back coating, we have n0 = 1.5, n1 = 1.38, and n2 = 1. We can
find θ0 and θ1 from θ2 = 45◦ using Snell’s law

n1 sinθ1 = sinθ2 ⇒ θ1 = sin−1
(

sin45◦

1.38

)
= 30.82◦

n0 sinθ0 = sinθ2 ⇒ θ0 = sin−1
(

sin45◦

1.5

)
= 28.13◦

5We ignore possible feedback between the front and rear coatings. Since the antireflection
films are usually imperfect, beam splitter substrates are often slightly wedged so that unwanted
reflections from the second surface travel in a different direction.
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Next we calculate the single-boundary Fresnel coefficients:

r 1�2
s =−sin(θ1 −θ2)

sin(θ1 +θ2)
=−sin(30.82◦−45◦)

sin(30.82◦+45◦)
= 0.253

r 0�1
s =−sin(θ1 −θ0)

sin(θ1 +θ0)
=−sin(30.82◦−28.13◦)

sin(30.82◦+28.13◦)
=−0.0549

These coefficients give us the phase shift due to reflection

φr 0�1
s

=π , φr 1�2
s

= 0

The single-boundary reflectances are given by

R0�1
s ≡ ∣∣r 0�1

s

∣∣2 = |−0.0549|2 = 0.0030

R1�2
s ≡ ∣∣r 1�2

s

∣∣2 = |0.253|2 = 0.0640

and the transmittances are

T 0�1
s = T 0�1

s = 1−R0�1
s = 1−0.0030 = 0.997

T 1�2
s = 1−R1�2

s = 1−0.0640 = 0.936

Finally, we calculate the coefficient of finesse

F = 4
√

R0�1
s R1�2

s(
1−√

R0�1
s R1�2

s

)2 = 4
p

(0.0030)(0.0640)(
1−p

(0.0030)(0.0640)
)2 = 0.0570

and the maximum transmittance

T max
s = T 0�1

s T 1�2
s(

1−√
R0�1

s R1�2
s

)2 = (0.997)(0.936)(
1−p

(0.0030)(0.0640)
)2 = 0.960

Putting everything together, we have

T tot
s = 0.960

1+0.0570sin2
(

2k1d̃ cosθ1+π
2

)
The maximum transmittance occurs when the sine is zero. In that case, T tot

s =
0.960, meaning that 96% of the light is transmitted. Without the coating, a situation
we can recover by temporarily setting d̃ = 0, the transmittance would be 90.8%, so
the coating gives a significant improvement.

We find the smallest thickness d̃ that minimizes reflection by setting the argument
of the sine to π:

2k1d̃ cosθ1 +π= 2π

Since k1 = 2πn1/λvac, we have

d̃ = λvac

4n1 cosθ1
= 633 nm

4(1.38)cos30.82◦
= 134 nm
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4.3 Beyond Critical Angle: Tunneling of Evanescent Waves

Figure 4.5 Animation showing
frustrated total internal reflection.

If n1 < n0, it is possible for θ0 to exceed the critical angle at the first interface.
In this case, (4.15) cannot be used to calculate transmittance. However, (4.14)
still holds as long as the angle θ2 is real (i.e. if the critical angle in the absence of
the middle layer is not exceeded). In this case an evanescent wave occurs in the
middle region, but not in the last region. If the second interface is sufficiently
close to the first, the evanescent wave stimulates the second surface to produce a
transmitted wave propagating at angle θ2 in the last region. This behavior, called
tunneling or frustrated total internal reflection, can be modeled using (4.14).

We do not need to deal directly with the complex angle θ1. Rather, we just need
sinθ1 and cosθ1 in order to calculate the single-boundary Fresnel coefficients.
From Snell’s law we have

sinθ1 = n0

n1
sinθ0 = n2

n1
sinθ2 (4.20)

even though sinθ1 > 1. For the middle layer we write

cosθ1 = i
√

sin2θ1 −1 (4.21)

We illustrate how to apply (4.14) via a specific example:

    

Figure 4.6 Frustrated total internal
reflection in two prisms.

Example 4.3

Calculate the transmittance of p-polarized light through the region between two
closely spaced 45◦ right prisms, as shown in Fig. 4.6, as a function of λvac and
the prism spacing d . Take the index of refraction of the prisms to be n = 1.5
surrounded by index n = 1, and use θ0 = θ2 = 45◦. Neglect possible reflections
from the exterior surfaces of the prisms.

Solution: From (4.20) and (4.21) we have

sinθ1 = 1.5sin45◦ = 1.061 and cosθ1 = i
√

1.0612 −1 = i 0.3536

We must compute various expressions involving Fresnel coefficients that appear
in (4.14):

∣∣∣t 0�1
p

∣∣∣2 =
∣∣∣∣ 2cosθ0 sinθ1

cosθ1 sinθ1 +cosθ0 sinθ0

∣∣∣∣2

=
∣∣∣∣∣ 2 1p

2
(1.061)

(i 0.3536)(1.061)+ 1p
2

1p
2

∣∣∣∣∣
2

= 5.76

∣∣∣t 1�2
p

∣∣∣2 =
∣∣∣∣ 2cosθ1 sinθ2

cosθ2 sinθ2 +cosθ1 sinθ1

∣∣∣∣2

=
∣∣∣∣∣ 2(i 0.3536) 1p

2
1p
2

1p
2
+ (i 0.3536)(1.061)

∣∣∣∣∣
2

= 0.640

r 1�2
p =−cosθ1 sinθ1 −cosθ0 sinθ0

cosθ1 sinθ1 +cosθ0 sinθ0
=−

(i 0.3536)(1.061)− 1p
2

1p
2

(i 0.3536)(1.061)+ 1p
2

1p
2

= e−i 1.287

https://vimeo.com/717105831
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For the last step in the r 1�2
p calculation, see problem P0.15. Also note that r 1�2

p =
r 0�1

p =−r 0�1
p since n0 = n2. We also need

k1d cosθ1 = 2π

λvac
d cosθ1 = 2π

λvac
d (i 0.3536) = i 2.22

(
d

λvac

)
We are now ready to compute the total transmittance (4.14). The factors out in
front vanish since θ0 = θ2 and n0 = n2, and we have

T tot
p =

∣∣∣t 0�1
p

∣∣∣2 ∣∣∣t 1�2
p

∣∣∣2

∣∣e−i k1d cosθ1 − r 0�1
p r 1�2

p e i k1d cosθ1
∣∣2

= (5.76)(0.640)∣∣∣∣e−i
[

i 2.22
(

d
λvac

)]
−e−i 1.287e−i 1.287e

i
[

i 2.22
(

d
λvac

)]∣∣∣∣2

= 3.69(
e

2.22
(

d
λvac

)
−e

−2.22
(

d
λvac

)
−i 2.574

)(
e

2.22
(

d
λvac

)
−e

−2.22
(

d
λvac

)
+i 2.574

)
= 3.69

e
4.44

(
d

λvac

)
+e

−4.44
(

d
λvac

)
−2

(
ei 2.574+e−i 2.574

2

)
= 3.69

e
4.44

(
d

λvac

)
+e

−4.44
(

d
λvac

)
−2cos(2.574)

= 3.69

e
4.44

(
d

λvac

)
+e

−4.44
(

d
λvac

)
+1.69

(4.22)

1

0
0 0.5 1 1.5 2

Figure 4.7 Plot of (4.22)

Figure 4.7 shows a plot of the transmittance (4.22) calculated in Example 4.3.
Notice that the transmittance is 100% when the two prisms are brought together as
expected. That is, T tot

p (d = 0) = 1. When the prisms are about a wavelength apart,
the transmittance is significantly reduced, and as the distance gets large compared
to a wavelength, the transmittance quickly goes to zero (T tot

p (d/λvac ≫ 1) ≈ 0).

4.4 Fabry-Perot Instrument

Maurice Paul Auguste Charles Fabry
(1867-1945, French) was born in Mar-
seille, France. At age 18, he entered the
École Polytechnique in Paris where he
studied for two years. Following that, he
spent a number of years teaching state
secondary school while simultaneously
working on a doctoral dissertation on in-
terference phenomena. After completing
his doctorate, he began working as a lec-
turer and laboratory assistant at the Uni-
versity of Marseille where a decade later
he was appointed a professor of physics.
Soon after his arrival to the University
of Marseille, Fabry began a long and
fruitful collaboration with Alfred Perot
(1863-1925). Fabry focused on theoret-
ical analysis and measurements while
his colleague did the design work and
construction of their new interferometer,
which they continually improved over the
years. During his career, Fabry made
significant contributions to spectroscopy
and astrophysics and is credited with
co-discovery of the ozone layer. See J. F.
Mulligan, “Who were Fabry and Perot?,”
Am. J. Phys. 66. 797-802 (1998).

In the 1890s, Charles Fabry realized that a double interface could be used to
distinguish wavelengths of light that are very close together. He and a talented
experimentalist colleague, Alfred Perot, constructed an instrument and began
to use it to make measurements on various spectral sources. The Fabry-Perot
instrument6 consists of two identical (parallel) surfaces separated by spacing d .
We can use our analysis in section 4.2 to describe this instrument. For simplicity,
we choose the refractive index before the initial surface and after the final surface
to be the same (i.e. n0 = n2). We assume that the transmission angles are such
that total internal reflection is avoided. The transmission through the device
depends on the exact spacing between the two surfaces, the reflectance of the
surfaces, as well as on the wavelength of the light.

6M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 7.6.2 (Cambridge University Press, 1999).



4.4 Fabry-Perot Instrument 99

If the spacing d separating the two parallel surfaces is adjustable, the instru-
ment is called a Fabry-Perot interferometer. If the spacing is fixed while the angle
of the incident light is varied, the instrument is called a Fabry-Perot etalon. An
etalon can therefore be as simple as a piece of glass with parallel surfaces. Some-
times, a thin optical membrane called a pellicle is used as an etalon (occasionally
inserted into laser cavities to discriminate against certain wavelengths). However,
to achieve sharp discrimination between closely-spaced wavelengths, a relatively
large spacing d is desirable.

Jean-Baptiste Alfred Perot (1863-1925,
French) was born in Metz, France. He
attended the Ecole Polytechnique and
then the University of Paris, where he
earned a doctorate in 1888. He became
a professor in Marseille in 1894 where
he began his collaboration with Fabry.
Perot contributed his considerable talent
of instrument fabrication to the endeavor.
Perot spent much of his later career
making precision astronomical and solar
measurements. See J. F. Mulligan, “Who
were Fabry and Perot?,” Am. J. Phys. 66.
797-802 (1998).

As we previously derived (4.15), the transmittance through a double boundary
is

T tot = T max

1+F sin2
(
Φ
2

) (4.23)

In the case of identical interfaces, the transmittance and reflectance coefficients
are the same at each surface (i.e. T = T 0�1 = T 1�2 and R = R0�1 = R1�2). In this
case, the maximum transmittance and the finesse coefficient simplify to

T max = T 2

(1−R)2 (4.24)

and

F = 4R

(1−R)2 (4.25)

In principle, these equations should be evaluated for either s- or p-polarized light.
However, a Fabry-Perot interferometer or etalon is usually operated near normal
incidence so that there is little difference between the two polarizations.

When using a Fabry-Perot instrument, one observes the transmittance T tot as
the parameterΦ is varied. The parameter Φ can be varied by altering d , θ1, or λ
as prescribed by

Φ= 4πn1d

λvac
cosθ1 +2φr (4.26)

To increase the sensitivity of the instrument, it is desirable to have the transmit-
tance T tot vary strongly as a function ofΦ. By inspection of (4.23), we see that this
happens if the finesse coefficient F is large. We achieve a large finesse coefficient
by increasing the reflectance R.

d

R T
A

Incident
light

Ag
coatings

Figure 4.8 Typical Fabry-Perot
setup. If the spacing d is variable,
it is called an interferometer; oth-
erwise, it is called an etalon.

The basic Fabry-Perot instrument design is shown in Fig. 4.8. In order to
achieve high reflectivity R (and therefore large F ), special coatings can be applied
to the surfaces, for example, a thin layer of silver to achieve reflectance of, say,
90%. Typically, two glass substrates are separated by distance d , with the coated
surfaces facing each other as shown in the figure. The substrates are aligned so
that the interior surfaces are parallel to each other. It is typical for each substrate
to be slightly wedge-shaped so that unwanted reflections from the outer surfaces
do not interfere with the double boundary situation between the two plates.

Technically, each coating constitutes its own double-boundary problem (or
multiple-boundary as the case may be). We can ignore this detail and simply
think of the overall setup as a single two-interface problem. Regardless of the
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details of the coatings, we can say that each coating has a certain reflectance R
and transmittance T . However, as light goes through a coating, it can also be
attenuated because of absorption. In this case, we have

R +T + A = 1 (4.27)

where A represents the amount of light absorbed at a coating. The attenuation A
reduces the amount of light that makes it through the instrument, but it does not
impact the nature of the interferences within the instrument.

0

Figure 4.9 Transmittance as the
phaseΦ is varied. The different
curves correspond to different
values of the finesse coefficient.

The total transmittance T tot (4.23) through an ideal Fabry-Perot instrument is
depicted in Fig. 4.9 as a function of Φ. The various curves correspond to different
values of F . Typical values ofΦ can be extremely large. For example, suppose that
the instrument is used at near-normal incidence (i.e. cosθ1

∼= 1) with a wavelength
of λvac = 500 nm and an interface separation of d = 1 cm. From (4.26) the value
of Φ (ignoring the phase term 2φr ) is approximately

Φ= 4π(1 cm)

500 nm
= 80,000π

As we vary d , λ, or θ1 by small amounts, we can easily cause Φ to change by 2π as
depicted in Fig. 4.9. The figure shows small changes in Φ in the neighborhood of
very large multiples of 2π.

The phase term 2φr in (4.26) depends on the exact nature of the coatings in the
Fabry-Perot instrument. However, we do not need to know the value of φr, which
may depend on both the complex index of the coating material and its thickness.
Whatever the value of φr, we only care that it is constant. Experimentally, we can
always compensate for the φr by ‘tweaking’ the spacing d , whose exact value is
likely not controlled for in the first place. Note that the required ‘tweak’ on the
spacing need only be a fraction of a wavelength, which is typically tiny compared
to the overall spacing d .

4.5 Setup of a Fabry-Perot Instrument

Angle
Adjustment

Collimated
Light

Interferometer

Actuated
Substrate

Aperture

Detector

Oscilloscope

SigTrig

Figure 4.10 Setup for a Fabry-
Perot interferometer.

Figure 4.10 shows the typical experimental setup for a Fabry-Perot interferometer.
A collimated beam of light is sent through the instrument. The beam is aligned so
that it is normal to the surfaces. It is critical for the two surfaces of the interferom-
eter to be extremely close to parallel. When aligned correctly, the transmission
of a collimated beam will ‘blink’ all together as the spacing d is changed (by tiny
amounts). A mechanical actuator can be used to vary the spacing between the
plates while the transmittance is observed on a detector. To make the alignment
of the instrument somewhat less critical, a small aperture can be placed in front
of the detector so that it observes only a small portion of the beam.
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Figure 4.11 Transmittance as the
separation d is varied (F = 100).

The transmittance as a function of plate separation is shown in Fig. 4.11. In
this case, Φ varies via changes in d (see (4.26) with cosθ1 = 1 and fixed wave-
length). As the spacing is increased by only a half wavelength, the transmittance
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changes through a complete period. The various peaks in the figure are called
fringes.

The setup for a Fabry-Perot etalon is similar to that of the interferometer
except that the spacing d remains fixed. Often the two surfaces in the etalon are
held parallel to each other by a precision spacer. An advantage to the Fabry-Perot
etalon (as opposed to the interferometer) is that no moving parts are needed. To
make measurements with an etalon, the angle of the light is varied rather than the
plate separation. After all, to see fringes, we just need to causeΦ in (4.23) to vary
in some way. According to (4.26), we can do that as easily by varying θ1 as we can
by varying d . One way to obtain a range of angles is to observe light from a ‘point
source’, as depicted in Fig. 4.12. Different portions of the beam go through the
device at different angles. When aligned straight on, the transmitted light forms a
‘bull’s-eye’ pattern on a screen.

Etalon
Point
Source 

Angle
Adjustment Screen

Figure 4.12 Schematic of a diverg-
ing monochromatic beam travers-
ing a Fabry-Perot etalon. The di-
vergence angle is exaggerated.

In Fig. 4.13 we graph the transmittance T tot (4.23) as a function of angle
(holding λvac = 500 nm and d = 1 cm fixed). Since cosθ1 is not a linear function,
the spacing of the peaks varies with angle. As θ1 increases from zero, the cosine
steadily decreases, causingΦ to decrease. Each time Φ decreases by 2π we get a
new peak. Not surprisingly, only a modest change in angle is necessary to cause
the transmittance to vary from maximum to minimum, or vice versa.
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Figure 4.13 Transmittance
through a Fabry-Perot etalon
(F = 10) as the angle θ1 is varied. It
is assumed that the distance d is
chosen such thatΦ is a multiple of
2π when the angle is zero.

The bull’s-eye pattern in Fig. 4.12 can be understood as the curve in Fig. 4.13
rotated about a circle. Depending on the exact spacing between the plates, the
angles where the fringes occur can be different. For example, the center spot
could be dark.

Spectroscopic samples often are not compact point-like sources. Rather, they
are extended diffuse sources. The point-source setup shown in Fig. 4.12 won’t
work for extended sources unless all of the light at the sample is blocked except
for a tiny point. This is impractical if there remains insufficient illumination at
the final screen for observation.

In order to preserve as much light as possible, we can sandwich the etalon
between two lenses. We place the diffuse source at the focal plane of the first lens.
We place the screen at the focal plane of the second lens. This causes an image of
the source to appear on the screen.7 Each point of the diffuse source is mapped
to a corresponding point on the screen. Moreover, the light associated with any
particular point of the source travels as a unique collimated beam in the region
between the lenses. Each collimated beam traverses the etalon with a specific
angle. Thus, light associated with each emission point traverses the etalon with
higher or lower transmittance, according to the differing angles. The result is that
a bull’s eye pattern becomes superimposed on the image of the diffuse source.
The lens and retina of your eye can be used for the final lens and screen.

Diffuse
Source

Lens Etalon Lens
Screen

Figure 4.14 Setup of a Fabry-Perot
etalon for looking at a diffuse
source.

7If the diffuse source has the shape of Mickey Mouse, then an image of Mickey Mouse appears
on the screen. Imaging techniques are discussed in chapter 9.
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4.6 Distinguishing Nearby Wavelengths in a Fabry-Perot
Instrument

Thus far, we have examined how the transmittance through a Fabry-Perot instru-
ment varies with surface separation d and angle θ1. However, the main purpose
of a Fabry-Perot instrument is to measure small changes in the wavelength of
light, which similarly affect the value of Φ (see (4.26)).8

Consider a Fabry-Perot interferometer where the transmittance through the
instrument is plotted as a function of plate spacing d . At certain spacings, Φ
happens to be a multiple of 2π for the wavelength λvac. Next, suppose we adjust
the wavelength to λvac +∆λ while observing the locations of these fringes. As
the wavelength changes, the locations at which Φ is a multiple of 2π change.
Consequently, the fringes shift as seen in figure 4.15.
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Figure 4.15 Transmittance as
the spacing d is varied for two
different wavelengths (F = 100).
The solid line plots the transmit-
tance of light with a wavelength
of λvac, and the dashed line plots
the transmittance of a wavelength
shorter than λvac. Note that the
fringes shift positions for different
wavelengths.

We now derive the connection between a change in wavelength and the
amount that Φ changes, which gives rise to the fringe shift seen in Fig. 4.15. At
the wavelength λvac +∆λ (all else remaining the same), (4.26) shifts to

Φ−∆Φ= 4πn1d cosθ1

λvac +∆λ
+2φr (4.28)

The change in wavelength ∆λ is usually very small compared to λvac, so we can
represent the denominator with a truncated Taylor-series expansion:

1

λvac +∆λ
= 1

λvac (1+∆λ/λvac)
∼= 1−∆λ/λvac

λvac
(4.29)

The amount that Φ changes is then seen to be

∆Φ= 4πn1d cosθ1

λ2
vac

∆λ (4.30)

If the change in wavelength is enough to cause ∆Φ= 2π, the fringes in Fig. 4.15
shift through a whole period, and the picture looks the same.

This brings up an important limitation of the instrument. If the fringes shift
by too much, we might become confused as to what exactly has changed, owing
to the periodic nature of the fringes. If two wavelengths aren’t sufficiently close,
the fringes of one wavelength may be shifted past several fringes of the other
wavelength, and we will not be able to tell by how much they differ.

This introduces the concept of free spectral range, which is the wavelength
change ∆λFSR that causes the fringes to shift through one period. We find this by
setting (4.30) equal to 2π. After rearranging, we get

∆λFSR =
λ2

vac

2n1d cosθ1
(4.31)

The free spectral range tends to be extremely narrow; a Fabry-Perot instrument is
not well suited for measuring wavelength ranges wider than this. In summary, the

8M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 7.6.3 (Cambridge University Press, 1999).
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free spectral range is the largest change in wavelength permissible while avoiding
confusion. To convert this wavelength difference ∆λFSR into a corresponding
frequency difference, one differentiates ν= c/λvac to get

|∆νFSR| = c∆λFSR

λ2
vac

(4.32)

Example 4.4

A Fabry-Perot interferometer has plate spacing d = 1 cm and index n1 = 1. If it
is used in the neighborhood of λvac = 500 nm, find the free spectral range of the
instrument.

Solution: From (4.31), the free spectral range is

∆λFSR =
λ2

vac

2n1d0 cosθ1
=∆λFSR = (500 nm)2

2(1)(1 cm)cos0◦
= 0.0125 nm

This means that we should not use the instrument to distinguish wavelengths that
are separated by more than this small amount.

Figure 4.16 Transmittance of a
diverging beam through a Fabry-
Perot etalon. Two nearby wave-
lengths are sent through the in-
strument simultaneously, (top)
barely resolved and (bottom) eas-
ily resolved.

We next consider the smallest change in wavelength that can be noticed,
or resolved with a Fabry-Perot instrument. For example, if two very near-by
wavelengths are sent through the instrument simultaneously, we can distinguish
them only if the separation between their corresponding fringe peaks is at least
as large as the width of an individual peak. This situation of two barely resolvable
fringe peaks is illustrated in Fig. 4.16 for a diverging beam traversing an etalon.

We will look for the wavelength change that causes a peak to shift by its own
width. We define the width of a peak by its full width at half maximum (FWHM).
Again, letΦ be a multiple of 2π where a peak in transmittance occurs. In this case,
we have from (4.23) that

T tot = T max

1+F sin2
(
Φ
2

) = T max (4.33)

since sin(Φ/2) = 0. When Φ shifts to a neighboring value Φ±ΦFWHM/2, then, by
definition, the transmittance drops to one half. Therefore, we may write

T tot = T max

1+F sin2
(
Φ0±ΦFWHM/2

2

) = T max

2
(4.34)

In solving for (4.34) for ΦFWHM, we see that this equation requires

F sin2
(
ΦFWHM

4

)
= 1 (4.35)

where we have taken advantage of the fact thatΦ is assumed to be a multiple of
2π. Next, we suppose thatΦFWHM/4 is rather small so that we may represent the



104 Chapter 4 Multiple Parallel Interfaces

sine by its argument. This approximation is okay if the finesse coefficient F is
rather large (say, 100). With this approximation, (4.35) simplifies to

ΦFWHM
∼= 4p

F
. (4.36)

The ratio of the period between peaks 2π to the widthΦFWHM of individual peaks
is called the reflecting finesse (or just finesse).

f ≡ 2π

ΦFWHM

= π
p

F

2
(4.37)

This parameter is often used to characterize the performance of a Fabry-Perot
instrument. Note that a higher finesse f implies sharper fringes in comparison to
the fringe spacing.

The free spectral range ∆λFSR compared to the minimum wavelength ∆λFWHM

is the same ratio f . Therefore, we have

∆λFWHM = ∆λFSR

f
= λ2

vac

πn1d cosθ1
p

F
(4.38)

As a final note, the ratio of λvac to ∆λFWHM, where ∆λFWHM is the minimum
change of wavelength that the instrument can distinguish in the neighborhood of
λvac, is called the resolving power:

RP ≡ λvac

∆λFWHM

(4.39)

Fabry-Perot instruments tend to have very high resolving powers as the following
example illustrates.

Example 4.5

If the Fabry-Perot interferometer in Example 4.4 has reflectivity R = 0.85, find the
finesse, the minimum distinguishable wavelength separation, and the resolving
power.

Solution: From (4.25), the finesse coefficient is

F = 4R

(1−R)2 = 4(0.85)

(1− (0.85))2 = 151

and by (4.37) the finesse is

f = π
p

F

2
= π

p
151

2
= 19.3

The minimum resolvable wavelength change is then

∆λFWHM = ∆λFSR

f
= 0.0125 nm

19
= 0.00065 nm (4.40)
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The instrument can distinguish two wavelengths separated by this tiny amount,
which gives an impressive resolving power of

RP = λvac

∆λFWHM
= 500 nm

0.00065 nm
= 772,000

For comparison, the resolving power of a typical grating spectrometer is much less
(a few thousand). However, a grating spectrometer has the advantage that it can
simultaneously observe wavelengths over hundreds of nanometers, whereas the
Fabry-Perot instrument is confined to the extremely narrow free spectral range.

4.7 Multilayer Coatings

As we saw in Example 4.2, a single coating cannot always accomplish a desired
effect, especially if the goal is to make a highly reflective mirror. For example,
if we want to make a mirror surface using a dielectric (i.e. nonmetallic) coating,
a single layer is insufficient to reflect the majority of the light. In P4.5 we find
that a single dielectric layer deposited on glass can reflect at most about 46%
of the light, even when we used a material with very high index. We would like
to do much better (e.g. >99%), and this can be accomplished with multilayer
dielectric coatings. Multilayer dielectric coatings can perform considerably better
than metal surfaces such as silver and have the advantage of being less prone to
damage.

In this section, we develop the formalism for dealing with arbitrary numbers
of parallel interfaces (i.e. multilayer coatings).9 Rather than incorporate the single-
interface Fresnel coefficients into the problem as we did in section 4.1, we will
find it easier to return to the fundamental boundary conditions for the electric
and magnetic fields at each interface between the layers.

We examine p-polarized light incident on an arbitrary multilayer coating
with all interfaces parallel to each other. It is left as an exercise to re-derive the
formalism for s-polarized light (see P4.13). The upcoming derivation is valid
also for complex refractive indices, although our notation suggests real indices.
The ability to deal with complex indices is very important if, for example, we
want to make mirror coatings work in the extreme ultraviolet wavelength range
where virtually every material is absorptive. Consider the diagram of a multilayer
coating in Fig. 4.17 for which the angle of light propagation in each region may be
computed from Snell’s law:

n0 sinθ0 = n1 sinθ1 = ·· · = nN sinθN = nN+1 sinθN+1 (4.41)

where N denotes the number of layers in the coating. The subscript 0 represents
the initial medium outside of the multilayer, and the subscript N +1 represents
the final material, or the substrate on which the layers are deposited.

9G. R. Fowles, Introduction to Modern Optics, 2nd ed., Sect 4.4 (New York: Dover, 1975); E. Hecht,
Optics, 3rd ed., Sect. 9.7.1 (Massachusetts: Addison-Wesley, 1998).
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x-axis
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Figure 4.17 Light propagation through multiple layers.

In each layer, only two plane waves exist, each of which is composed of light
arising from the many possible bounces from various layer interfaces. The arrows
pointing right indicate plane wave fields in individual layers that travel roughly
in the forward (incident) direction, and the arrows pointing left indicate plane
wave fields that travel roughly in the backward (reflected) direction. In the final
region, there is only one plane wave traveling with a forward direction (E (p)

N+1�)
which gives the overall transmitted field.

As we have studied in chapter 3 (see (3.9) and (3.13)), the boundary conditions
for the parallel components of the E field and for the parallel components of the
B field lead respectively to

cosθ0
(
E (p)

0� +E (p)
0�

)= cosθ1
(
E (p)

1� +E (p)
1�

)
(4.42)

and
n0

(
E (p)

0� −E (p)
0�

)= n1

(
E (p)

1� −E (p)
1�

)
(4.43)

Similar equations give the field connection for s-polarized light (see (3.8) and
(3.14)).

We have applied these boundary conditions at the first interface only. Of
course there are many more interfaces in the multilayer. For the connection
between the j th layer and the next, we may similarly write

cosθ j

(
E (p)

j�e i k j d j cosθ j +E (p)
j�e−i k j d j cosθ j

)
= cosθ j+1

(
E (p)

j+1� +E (p)
j+1�

)
(4.44)

and
n j

(
E (p)

j�e i k j d j cosθ j −E (p)
j�e−i k j d j cosθ j

)
= n j+1

(
E (p)

j+1� −E (p)
j+1�

)
(4.45)

Here we have set the origin within each layer at the left surface. Then when
making the connection with the subsequent layer at the right surface, we must
specifically take into account the phase k j ·

(
d j ẑ

)= k j d j cosθ j . This corresponds
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to the phase acquired by the plane wave field in traversing the layer with thickness
d j . The right-hand sides of (4.44) and (4.45) need no phase adjustment since the
( j +1)th field is evaluated on the left side of its layer.

At the final interface, the boundary conditions are

cosθN

(
E (p)

N�e i kN dN cosθN +E (p)
N�e−i kN dN cosθN

)
= cosθN+1E (p)

N+1� (4.46)

and
nN

(
E (p)

N�e i kN dN cosθN −E (p)
N�e−i kN dN cosθN

)
= nN+1E (p)

N+1� (4.47)

since there is no backward-traveling field in the final medium.
At this point we are ready to solve (4.42)–(4.47). We would like to eliminate

all fields besides E (p)
0�, E (p)

0�, and E (p)
N+1�. Then we will be able to find the overall

reflectance and transmittance of the multilayer coating. In solving (4.42)–(4.47),
we must proceed with care, or the algebra can quickly get out of hand. Fortunately,
you have probably had training in linear algebra, and this is a case where that
training pays off.

We first write a general matrix equation that summarizes the mathematics in
(4.42)–(4.47), as follows:

[
cosθ j e iβ j cosθ j e−iβ j

n j e iβ j −n j e−iβ j

][
E (p)

j�

E (p)
j�

]
=

[
cosθ j+1 cosθ j+1

n j+1 −n j+1

][
E (p)

j+1�

E (p)
j+1�

]
(4.48)

where

β j ≡
{

0 j = 0
k j d j cosθ j 1 ≤ j ≤ N

(4.49)

and
E (p)

N+1� ≡ 0 (4.50)

(It would be good to take a moment to convince yourself that this set of matrix
equations properly represents (4.42)–(4.47) before proceeding.) We rewrite (4.48)
as [

E (p)
j�

E (p)
j�

]
=

[
cosθ j e iβ j cosθ j e−iβ j

n j e iβ j −n j e−iβ j

]−1 [
cosθ j+1 cosθ j+1

n j+1 −n j+1

][
E (p)

j+1�

E (p)
j+1�

]
(4.51)

Keep in mind that (4.51) represents a distinct matrix equation for each differ-
ent j . We can substitute the j = 1 equation into the j = 0 equation to get[

E (p)
0�

E (p)
0�

]
=

[
cosθ0 cosθ0

n0 −n0

]−1

M (p)

1

[
cosθ2 cosθ2

n2 −n2

][
E (p)

2�

E (p)
2�

]
(4.52)

where we have grouped the matrices related to the j = 1 layer together via

M (p)

1 ≡
[

cosθ1 cosθ1

n1 −n1

][
cosθ1e iβ1 cosθ1e−iβ1

n1e iβ1 −n1e−iβ1

]−1

(4.53)
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We can continue to substitute into this equation progressively higher order equa-
tions (i.e. for j = 2, j = 3, ... ) until we reach the j = N layer. All together this will
give[

E (p)
0�

E (p)
0�

]
=

[
cosθ0 cosθ0

n0 −n0

]−1 (
N∏

j=1
M (p)

j

)[
cosθN+1 cosθN+1

nN+1 −nN+1

][
E (p)

N+1�

0

]
(4.54)

where the matrices related to the j th layer are grouped together according to

M (p)

j ≡
[

cosθ j cosθ j

n j −n j

][
cosθ j e iβ j cosθ j e−iβ j

n j e iβ j −n j e−iβ j

]−1

=
[

cosβ j −i sinβ j cosθ j /n j

−i n j sinβ j /cosθ j cosβ j

] (4.55)

The matrix inversion in the first line was performed using (0.35). The symbol Π
signifies the product of the matrices with the lowest subscripts on the left:

N∏
j=1

M (p)

j ≡ M (p)

1 M (p)

2 · · ·M (p)

N (4.56)

As a finishing touch, we divide (4.54) by the incident field E (p)
0� as well as perform

the matrix inversion on the right-hand side to obtain[
1

E (p)
0�

/
E (p)

0�

]
= A(p)

[
E (p)

N+1�

/
E (p)

0�

0

]
(4.57)

where

A(p) ≡
[

a(p)
11 a(p)

12

a(p)
21 a(p)

22

]
= 1

2n0 cosθ0

[
n0 cosθ0

n0 −cosθ0

](
N∏

j=1
M (p)

j

)[
cosθN+1 0

nN+1 0

]
(4.58)

In the final matrix in (4.58) we have replaced the entries in the right column with
zeros. This is permissible since it operates on a column vector with zero in the
bottom component.

Equation (4.57) represents two equations, which must be solved simultane-
ously to find the ratios E (p)

0�/E (p)
0� and E (p)

N+1�/E (p)
0�. Once the matrix A(p) is computed,

this is a relatively simple task:

t tot
p ≡ E (p)

N+1�

E (p)
0�

= 1

a(p)
11

(Multilayer) (4.59)

r tot
p ≡ E (p)

0�

E (p)
0�

= a(p)
21

a(p)
11

(Multilayer) (4.60)

The convenience of this notation lies in the fact that we can deal with an
arbitrary number of layers N with varying thickness and index. The essential
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information for each layer is contained succinctly in its respective 2× 2 char-
acteristic matrix M . To find the overall effect of the many layers, we need only
multiply the matrices for each layer together to find A from which we compute
the reflection and transmission coefficients for the whole system.

The derivation for s-polarized light is similar to the above derivation for p-
polarized light. The equation corresponding to (4.57) for s-polarized light turns
out to be [

1
E (s)

0�

/
E (s)

0�

]
= A(s)

[
E (s)

N+1�

/
E (s)

0�

0

]
(4.61)

where

A(s) ≡
[

a(s)
11 a(s)

12

a(s)
21 a(s)

22

]
= 1

2n0 cosθ0

[
n0 cosθ0 1
n0 cosθ0 −1

](
N∏

j=1
M (s)

j

)[
1 0

nN+1 cosθN+1 0

]
(4.62)

and

M (s)

j =
[

cosβ j −i sinβ j /(n j cosθ j )
−i n j cosθ j sinβ j cosβ j

]
(4.63)

The transmission and reflection coefficients are found (as before) from

t tot
s ≡ E (s)

N+1�

E (s)
0�

= 1

a(s)
11

(Multilayer) (4.64)

r tot
s ≡ E (s)

0�

E (s)
0�

= a(s)
21

a(s)
11

(Multilayer) (4.65)

4.8 Periodic Multilayer Stacks

Many different types of multilayer coatings are possible. For example, a Brewster’s-
angle polarizer has a coating designed to transmit with high efficiency p-polarized
light while simultaneously reflecting s-polarized light with high efficiency. The
backside of the substrate is left uncoated where p-polarized light passes with
100% efficiency at Brewster’s angle. ...

su
b
st
ra
te

Figure 4.18 A repeated multilayer
structure with alternating high
and low indexes where each layer
is a quarter wavelength in thick-
ness. This structure can achieve
very high reflectance.

Sometimes multilayer coatings are made with repeated stacks of layers. If
the same series of layers in (4.66) is repeated many times, say q times, Sylvester’s
theorem (see section 0.3) can come in handy. A block of matrices, corresponding
to a repeated pattern within the stack, can be conveniently taken to any power.
Sylvester’s theorem requires that the determinant of the matrix be to equal one,
which is true for matrices of the form (4.55) and (4.63) or any product of them.

It is common for high-reflection coatings to be designed with alternating high
and low refractive indices. For high reflectivity, each layer should have a quarter-
wave thickness. Since the layers alternate high and low indices, at every other
boundary there is a phase shift of π upon reflection from the interface. Hence,
the quarter wavelength spacing is appropriate to give constructive interference in
the reflected direction.
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Example 4.6

Derive the reflection and transmission coefficients for p polarized light interacting
with a high reflector constructed using a λ/4 stack.

Solution: For a λ/4 stack we need

β j = π

2

This amounts to a thickness requirement of

d j = λvac

4n j cosθ j

In this situation, the matrix (4.55) for each layer simplifies to

M (p)

j =
[

0 −i cosθ j /n j

−i n j /cosθ j 0

]
The matrices for a high and a low refractive index layer are multiplied together in
the usual manner. Each layer pair takes the form[

0 − i cosθH
nH

− i nH
cosθH

0

][
0 − i cosθL

nL

− i nL
cosθL

0

]
=

[
−nL cosθH

nH cosθL
0

0 −nH cosθL
nL cosθH

]

To extend to q = N /2 identical layer pairs, we have

N∏
j=1

M (p)

j =
[

−nL cosθH
nH cosθL

0

0 −nH cosθL
nL cosθH

]q

=
 (

−nL cosθH
nH cosθL

)q
0

0
(
−nH cosθL

nL cosθH

)q


Substituting this into (4.58), we obtain

A(p) = 1

2

 (
−nL cosθH

nH cosθL

)q cosθN+1
cosθ0

+
(
−nH cosθL

nL cosθH

)q nN+1
n0

0(
−nL cosθH

nH cosθL

)q cosθN+1
cosθ0

−
(
−nH cosθL

nL cosθH

)q nN+1
n0

0

 (4.66)

With A(p) in hand, we can now calculate the transmission coefficient from (4.59)

t tot
p = 1(

−nL cosθH
nH cosθL

)q cosθN+1
cosθ0

+
(
−nH cosθL

nL cosθH

)q nN+1
n0

(λ/4 stack, p-polarized) (4.67)

and the reflection coefficient from (4.60)

r tot
p =

(
−nL cosθH

nH cosθL

)q cosθN+1
cosθ0

−
(
−nH cosθL

nL cosθH

)q nN+1
n0(

−nL cosθH
nH cosθL

)q cosθN+1
cosθ0

+
(
−nH cosθL

nL cosθH

)q nN+1
n0

(λ/4 stack, p-polarized) (4.68)

t

r

q

0

-0.5

-1

0 5 10

Figure 4.19 The transmission and
reflection coefficients for a quarter
wave stack as q is varied (nL = 1.38
and nH = 2.32).

The quarter-wave multilayer considered in Example 4.6 can achieve extraor-
dinarily high reflectivity. In the limit of q →∞, we have tp → 0 and rp →−1 (see
Fig. 4.19), giving 100% reflection with a π phase shift.
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Exercises

Exercises for 4.1 Double-Interface Problem Solved Using Fresnel Coefficients

P4.1 Use (4.4)–(4.7) to derive r tot
s given in (4.12).

P4.2 Consider a 1µm thick coating of dielectric material (n = 2) on a piece
of glass (n = 1.5). Use a computer to plot the magnitude of the overall
Fresnel coefficient (4.11) from air into the glass at normal incidence.
Plot as a function of incident wavelength in the range 200 nm to 800 nm,
assuming the index remains constant over this range.

Exercises for 4.2 Transmittance through Double Interface at Subcritical Angles

P4.3 Verify that (4.14) simplifies to (4.15) assuming θ1 and θ2 are real.

P4.4 A light wave impinges at normal incidence on a thin glass plate with
index n and thickness d .

(a) Show that the transmittance through the plate is

T tot = 1

1+ (n2−1)2

4n2 sin2
(

2πnd
λvac

)
HINT: Find

r 1�2 = r 0�1 =−r 0�1 = n −1

n +1

and then use
T 0�1 = 1−R0�1

T 1�2 = 1−R1�2

(b) If n = 1.5, what is the maximum and minimum possible transmit-
tance through the plate?

(c) If the plate thickness is d = 150 µm (same index as part (b)), what
wavelengths transmit with maximum throughput? Express your answer
as a formula involving an integer m.

P4.5 Show that the maximum reflectance possible from the front coating
in Example 4.2 is 46%. Find the smallest possible d that accomplishes
this for light with wavelength λvac = 633 nm.
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Exercises for 4.3 Beyond Critical Angle: Tunneling of Evanescent Waves

P4.6 Re-compute (4.22) for the case of s-polarized light. Write the result in
the same form as the final expression in (4.22).

Answer: T tot
s = 1.44

e4.44d/λ+e−4.44d/λ−0.560

L4.7 Consider s-polarized microwaves (λvac = 3 cm) encountering an air
gap separating two paraffin wax prisms (n = 1.5). The 45◦ right-angle
prisms are arranged with the geometry shown in Fig. 4.6. The presence
of the second prism ‘frustrates’ the total internal reflection.

T

Separation (cm)

Figure 4.20 Theoretical vs. mea-
sured microwave transmission
through wax prisms. Mismatch is
presumably due to imperfections
in microwave collimation and/or
extraneous reflections.

Microwave
Source

Paraffin
Lens

Paraffin
Prisms

Paraffin
Lens

Microwave
Detector

Figure 4.21

(a) Use a computer to plot the transmittance through the gap (i.e. the
result of P4.6) as a function of separation d (normal to gap surface).
Neglect reflections from other surfaces of the prisms.

(b) Measure the transmittance of the microwaves through the gap as
a function of spacing d (normal to the surface) and superimpose the
results on the graph of part (a). Figure 4.20 shows a plot of typical data
taken with this setup. HINT: Ignore surface reflections by normalizing
the measured power to a value of 1 when d = 0. (video)

Exercises for 4.6 Distinguishing Nearby Wavelengths in a Fabry-Perot Instru-
ment

P4.8 A Fabry-Perot interferometer has silver-coated plates each with re-
flectance R = 0.9, transmittance T = 0.05, and absorbance A = 0.05.
The plate separation is d = 0.5 cm with interior index n1 = 1. Suppose
that the wavelength being observed near normal incidence is 587 nm.

(a) What is the maximum and minimum transmittance through the
interferometer?

(b) What are the free spectral range∆λFSR and the fringe width∆λFWHM?

(c) What is the resolving power?

P4.9 Generate a plot like Fig. 4.13, showing the fringes you get in a Fabry-
Perot etalon when θ1 is varied. Let T max = 1, F = 10, λvac = 633 nm,
d = 1 cm, and n1 = 1.

https://vimeo.com/717097180
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(a) Plot T vs. θ1 over the angular range used in Fig. 4.13.

(b) Suppose d is slightly different, say 1.00001 cm. Make a plot of T max

vs θ1 for this situation.

P4.10 Consider the configuration depicted in Fig. 4.12, where the center of the
diverging light beam λvac = 633 nm approaches the plates at normal
incidence. Suppose that the spacing of the plates (near d = 0.5 cm) is
just right to cause a bright fringe to occur at the center. Let n1 = 1. Find
the angle for the mth circular bright fringe surrounding the central spot
(the 0th fringe corresponding to the center). HINT: cosθ ∼= 1−θ2/2. The
answer has the form a

p
m; find the value of a.

L4.11 Characterize a Fabry-Perot etalon in the laboratory using a HeNe laser
(λvac = 633 nm). Assume that the bandwidth ∆λHeNe of the HeNe laser
is very narrow compared to the fringe width of the etalon ∆λFWHM.
Assume two identical reflective surfaces separated by 5.00 mm. Deduce
the free spectral range ∆λFSR, the fringe width ∆λFWHM, the resolving
power RP , and the reflecting finesse f . (video)

Laser
Diverging Lens

Filter

Fabry-Perot
Etalon

CCD
Camera

Figure 4.22

N

S

Filter

Fabry-Perot
Etalon

CCD
Camera

Figure 4.23

L4.12 Use the Fabry-Perot etalon characterized in the previous exercise to
observe the Zeeman splitting of the yellow line λ= 587.4 nm emitted
by a krypton lamp when a magnetic field is applied. As the line splits
and moves through half of the free spectral range, the peak of the
decreasing wavelength and the peak of the increasing wavelength meet
on the screen. When this happens, by how much has each wavelength
shifted? (video)

Exercises for 4.7 Multilayer Coatings

P4.13 (a) Write (4.42) through (4.47) for s-polarized light.

(b) From these equations, derive (4.61)–(4.63).

P4.14 Show that (4.64) for a single layer (i.e. two interfaces), is equivalent to
(4.11). WARNING: This is more work than it may appear at first.

https://vimeo.com/717097183
https://vimeo.com/717097155
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Exercises for 4.8 Periodic Multilayer Stacks

P4.15 (a) What should be the thickness of the high and the low index layers in
a periodic high-reflector mirror? Let the light be p-polarized and strike
the mirror surface at 45◦. Take the indices of the layers be nH = 2.32
and nL = 1.38, deposited on a glass substrate with index n = 1.5. Let
the wavelength be λvac = 633 nm.

(b) Find the reflectance R with 1, 2, 4, and 8 periods in the high-low
stack.

P4.16 Find the high-reflector matrix for s-polarized light that corresponds to
(4.66).

P4.17 Consider an anti-reflection coating designed for use at normal inci-
dence between air (n0 = 1) and glass (ng = 1.50):

(a) Show that the reflectance of a single-layer λ/4 coating (where λ is
the wavelength in n1) is

R =
(

ng −n2
1

ng +n2
1

)2

(b) Show that for a two-coating arrangement (where n1 and n2 are each
a λ/4 film), that

R =
(

n2
2 −ng n2

1

n2
2 +ng n2

1

)2

(c) Design anti-reflection coatings using the scheme in (a) and the
scheme in (b). You have a choice of these common coating materials:
ZnS (n = 2.32), CeF (n = 1.63) and MgF (n = 1.38). Find the recipe that
gives you the lowest R in each case. (When considering scheme (b), be
sure to specify which material is n1 and which is n2.)

P4.18 In this problem, we will see that the trick used in P4.17, employing
a bilayer to improve anti reflection, doesn’t get better with repeated
bilayers. Consider a bilayer anti-reflection coating (each coating set for
λ/4) using n1 = 1.38 and n2 = 1.38 applied to a glass substrate ng = 1.50
at normal incidence. Suppose the coating thicknesses are optimized for
λvac = 550 nm (in the middle of the visible range) and ignore possible
variations of the indices with λ. Use a computer to plot R(λair) for 400
to 700 nm (visible range). Do this for a single bilayer (one layer of each
coating), two bilayers, four bilayers, and 25 bilayers. HINT: You will see
the good AR coating turn into a good HR coating.



Review, Chapters 1–4

True and False Questions

R1 T or F: The optical index of materials (not vacuum) varies with fre-
quency.

R2 T or F: The frequency of light can change as it enters a different material
(consider low intensity—no nonlinear effects).

R3 T or F: The entire expression E0e i (k·r−ωt ) associated with a light field
(both the real part and the imaginary parts) describes the physical
wave.

R4 T or F: The real part of the refractive index cannot be less than one.

R5 T or F: s-polarized light and p-polarized light experience the same
phase shift upon reflection from a material with complex index.

R6 T or F: When p-polarized light enters a material at Brewster’s angle, the
intensity of the transmitted beam is the same as the intensity of the
incident beam.

R7 T or F: When light is incident upon a material interface at Brewster’s
angle, only one polarization can transmit.

R8 T or F: When light is incident upon a material interface at Brewster’s
angle, p-polarized light stimulates dipoles in the material to oscillate
with orientation along kr .

R9 T or F: The critical angle for total internal reflection exists on both sides
of a material interface.

R10 T or F: From a given location above a (smooth flat) surface of water, it
is possible to see objects positioned anywhere under the water.

R11 T or F: From a given location beneath a (smooth flat) surface of water,
it is possible to see objects positioned anywhere above the water.
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R12 T or F: For incident angles beyond the critical angle for total internal
reflection, the Fresnel coefficients ts and tp are both zero.

R13 T or F: Evanescent waves travel parallel to the surface interface on the
transmitted side.

R14 T or F: For a given incident angle and value of n, there is only one
single-layer coating thickness d that will minimize reflections.

R15 T or F: It is always possible to completely eliminate reflections using a
single-layer antireflection coating if you are free to choose the coating
thickness but not its index.

R16 T or F: When coating each surface of a lens with a single-layer antireflec-
tion coating (made of the same material), the thickness of the coating
on the front of the lens will need to be different from the thickness of
the coating on the back of the lens.

Problems

R17 (a) Write down Maxwell’s equations from memory.

(b) Derive the wave equation for E under the assumptions that Jfree = 0
and P = ϵ0χE (which also implies ∇·P = 0). Note: ∇×(∇×E) =∇ (∇·E)−
∇2E.

(c) Show by direct substitution that E (r, t ) = E0e i (k·r−ωt ) is a solution
to the wave equation. Find the resulting connection between k and ω.
Give appropriate definitions for c and n, assuming that χ is real.

(d) If k = k ẑ and E0 = E0x̂, find the associated B-field.

(e) The Poynting vector is S = E×B/µ0. Derive an expression for I ≡ 〈S〉t .
HINT: You must use real fields.

z-axis

    

x-axis
directed into page

Figure 4.24

R18 Consider an interface between two isotropic media where the incident
field is defined by

Ei =
[

E (p)

i

(
ŷcosθi − ẑsinθi

)+ x̂E (s)

i

]
e i[ki (y sinθi+z cosθi )−ωi t]

The plane of incidence is shown in Fig. 4.24

(a) By inspection of the figure, write down similar expressions for the
reflected and transmitted fields (i.e. Er and Et ).

(b) Find an expression relating Ei , Er, and Et using the boundary con-
dition at the interface. Also obtain the law of reflection and Snell’s
law.
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(c) The boundary condition requiring that the tangential component
of B must be continuous leads to

ni (E (p)

i −E (p)
r ) = nt E (p)

t

ni (E (s)

i −E (s)
r )cosθi = nt E (s)

t cosθt

Use this and the results from part (b) to derive

rp ≡ E (p)
r

E (p)

i

=− tan(θi −θt )

tan(θi +θt )

R19 The Fresnel coefficients may be written

rs ≡
E (s)

r

E (s)

i

= sinθt cosθi − sinθi cosθt

sinθt cosθi + sinθi cosθt

ts ≡
E (s)

t

E (s)

i

= 2sinθt cosθi

sinθt cosθi + sinθi cosθt

rp ≡ E (p)
r

E (p)

i

= cosθt sinθt −cosθi sinθi

cosθt sinθt +cosθi sinθi

tp ≡
E (p)

t

E (p)

i

= 2cosθi sinθt

cosθt sinθt +cosθi sinθi

(a) Make substitutions from Snell’s law to show what each of these
equations reduces to when θi = 0. Express you answers in terms of ni

and nt .

(b) What percent of light (intensity) reflects from a glass surface (n =
1.5) when light enters from air (n = 1) at normal incidence?

(c) What percent of light reflects from the glass surface when light exits
into air at normal incidence?

R20 Light goes through a glass prism with optical index n = 1.55. The light
enters at Brewster’s angle and exits at normal incidence as shown in
Fig. 4.25.

Figure 4.25

(a) Derive and calculate Brewster’s angle θB. You may use the results of
R18 (c).

(b) Calculate φ.

(c) What percent of the light (power) goes all the way through the prism
if it is p-polarized? You may use the expression employed in R19(c).

(d) Repeat part (c) for s-polarized light.
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Figure 4.26

R21 A 45◦- 90◦- 45◦ prism is a good device for reflecting a beam of light
parallel to the initial beam (see Fig. 4.26). The exiting beam will be
parallel to the entering beam even when the incoming beam is not
normal to the front surface (although it needs to be in the plane of the
drawing).

(a) How large an angle θ can be tolerated before there is no longer total
internal reflection at both interior surfaces? Assume n = 1 outside of
the prism and n = 1.5 inside.

(b) If the light enters and leaves the prism at normal incidence, what
will the difference in phase be between the s and p-polarizations? You
may use the Fresnel coefficients provided in R19.

R22 A thin glass plate with index n = 1.5 is oriented at Brewster’s angle so
that p-polarized light with wavelength λvac = 500 nm goes through
with 100% transmittance.

(a) What is the minimum thickness that will make the reflection of
s-polarized light be maximum?

(b) What is the total transmittance T tot
s for this thickness assuming

s-polarized light?

R23 Consider an ideal Fabry-Perot interferometer with

T tot = T max

1+F sin2
(
Φ
2

) , T max = T 2

(1−R)2 , F = 4R

(1−R)2

and Φ= 4πn1d

λvac
cosθ1 +2φr

(a) Derive the free spectral range

∆λFSR =
λ2

vac

2nd cosθ1

(b) Derive the fringe width

∆λFWHM = λ2
vac

π
p

F n1d cosθ1

(c) Give the reflecting finesse f =∆λFSR

/
∆λFWHM .

R24 For a Fabry-Perot etalon, let R = 0.90, λvac = 500 nm, n = 1, and d =
5.0 mm.

(a) Suppose that a maximum transmittance occurs at the angle θ = 0.
What is the nearest angle where the transmittance will be half of the
maximum transmittance? You may assume that cosθ ∼= 1−θ2/2.
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(b) You desire to use a Fabry-Perot etalon to view the light from a large
diffuse source rather than a point source. Draw a diagram depicting
where lenses should be placed, indicating relevant distances. Explain
briefly how it works.

Figure 4.27

R25 The p-polarized matrix equation relating reflected and transmitted
fields to the incident field impinging on multilayer interface is

[
1

E (p)
0�

/
E (p)

0�

]
= A(p)

[
E (p)

N+1�

/
E (p)

0�

0

]
where

A(p) = 1

2n0 cosθ0

[
n0 cosθ0

n0 −cosθ0

](
N∏

j=1
M (p)

j

)[
cosθN+1 0

nN+1 0

]

M (p)

j =
[

cosβ j −i sinβ j cosθ j /n j

−i n j sinβ j /cosθ j cosβ j

]
β j = k j d j cosθ j

(a) If the layer is an antireflective coating applied between air (n0 = 1)
and glass (n2 = 1.55) designed to work at normal incidence. What is
the minimum thickness the coating should have? HINT: It is less work
if you can figure this out without referring to the above equation.

(b) If there is just one layer of material, show that at normal incidence
the above matrix equation for the thickness chosen in (a) reduces to

[
1

E (p)
0�

/
E (p)

0�

]
= 1

2

 −i
(

n1
n0

+ n2
n1

)
0

i
(

n1
n0

− n2
n1

)
0

[
E (p)

2�

/
E (p)

0�

0

]

(c) Assuming the parameters in part (b), find the index of refraction n1

that will make the reflectance be zero.

Selected Answers

R19: (b) 4% (c) 4%.

R20: (b) 33◦, (c) 95%, (d) 79%.

R21: (a) 4.8◦, (b) 74◦.

R22: (a) 100 nm. (b) 0.55.

R24: (a) 0.074◦.

P25: (c) 1.24.





Chapter 5

Propagation in Anisotropic Media

To this point, we have considered only isotropic media where the susceptibility
χ(ω) (and hence the index of refraction) is the same for all propagation directions
and polarizations. In anisotropic materials, such as crystals, it is possible for
light to experience a different index of refraction depending on the alignment of
the electric field E (i.e. polarization). This difference in the index of refraction
occurs when the direction and strength of the induced dipoles depends on the
lattice structure of the material in addition to the propagating field.1 The unique
properties of anisotropic materials make them important elements in many
optical systems.

In section 5.1 we discuss how to connect E and P in anisotropic media using a
susceptibility tensor. In section 5.2 we apply Maxwell’s equations to a plane wave
traveling in a crystal. The analysis leads to Fresnel’s equation, which relates the
components of the k-vector to the components of the susceptibility tensor. In
section 5.3 we apply Fresnel’s equation to a uniaxial crystal (e.g. quartz, sapphire)
where χx =χy ̸=χz . In the context of a uniaxial crystal, we show that the Poynting
vector and the k-vector are generally not parallel.

More than a century before Fresnel, Christian Huygens successfully described
birefringence in crystals using the idea of elliptical wavelets. His method gives
the direction of the Poynting vector associated with the extraordinary ray in a
crystal. It was Huygens who coined the term ‘extraordinary’ since one of the
rays in a birefringent material appeared not to obey Snell’s law. Actually, the
k-vector always obeys Snell’s law, but in a crystal, the k-vector points in a different
direction than the Poynting vector, which delivers the energy seen by an observer.
Huygens’ approach is outlined in Appendix 5.D.

5.1 Constitutive Relation in Crystals

In an anisotropic crystal, asymmetries in the lattice can cause the medium polar-
ization P to respond in a different direction than the electric field E (i.e. P ̸= ϵ0χE).

1Not all crystals are anisotropic. For instance, crystals with a cubic lattice structure (such as
NaCl) are highly symmetric and respond to electric fields the same in any direction.
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However, at low intensities the response of materials is still linear (or propor-
tional) to the strength of the electric field. The linear constitutive relation which
connects P to E in a crystal can be expressed in its most general form as Px

Py

Pz

= ϵ0

 χxx χx y χxz

χy x χy y χy z

χzx χz y χzz

 Ex

Ey

Ez

 (5.1)

The matrix in (5.1) is called the susceptibility tensor. To visualize the behavior

Figure 5.1 A physical model of an
electron bound in a crystal lattice
with the coordinate system spe-
cially chosen along the principal
axes so that the susceptibility ten-
sor takes on a simple form.

of electrons in such a material, we imagine each electron bound as though by
tiny springs with different strengths in different dimensions to represent the
anisotropy (see Fig. 5.1). When an external electric field is applied, the electron
experiences a force that moves it from its equilibrium position. The ‘springs’
(actually the electric force from ions bound in the crystal lattice) exert a restoring
force, but the restoring force is not equal in all directions—the electron tends to
move more along the dimension of the weaker spring. The displaced electron
creates a microscopic dipole, but the asymmetric restoring force causes P to be in
a direction different than E as depicted in Fig. 5.2.

To understand the geometrical interpretation of the many coefficients χi j ,
assume, for example, that the electric field is directed along the x-axis (i.e. Ey =
Ez = 0) as depicted in Fig. 5.2. In this case, the three equations encapsulated in
(5.1) reduce to

Px = ϵ0χxx Ex

Py = ϵ0χy x Ex

Pz = ϵ0χzx Ex

Notice that the coefficient χxx connects the strength of P in the x̂ direction with
the strength of E in that same direction, just as in the isotropic case. The other two
coefficients (χy x and χzx ) describe the amount of polarization P produced in the
ŷ and ẑ directions by the electric field component in the x-dimension. Likewise,
the other coefficients with mixed subscripts in (5.1) describe the contribution to
P in one dimension made by an electric field component in another dimension.

Figure 5.2 The applied field E and
the induced polarization P in gen-
eral are not parallel in a crystal
lattice.

As you might imagine, working with nine susceptibility coefficients can get
complicated. Fortunately, we can greatly reduce the complexity of the description
by a judicious choice of coordinate system. In Appendix 5.A we explain how
conservation of energy requires that the susceptibility tensor (5.1) for typical
nonabsorbing crystals be real and symmetric (i.e. χi j =χ j i ).2

Appendix 5.B shows that, given a real symmetric tensor, it is always possible
to choose a coordinate system for which off-diagonal elements vanish. This is
true even if the lattice planes in the crystal are not mutually orthogonal (e.g.
rhombus, hexagonal, etc.). We will imagine that this rotation of coordinates

2By ‘typical’ we mean that the crystal does not exhibit optical activity. Optically active crystals
have a complex susceptibility tensor, even when no absorption takes place. Conservation of energy
in this more general case requires that the susceptibility tensor be Hermitian (χi j =χ∗j i ).
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has been accomplished. In other words, we can let the crystal itself dictate the
orientation of the coordinate system, aligned to the principal axes of the crystal
for which the off-diagonal elements of (5.1) are zero

With the coordinate system aligned to the principal axes, the constitutive
relation for a nonabsorbing crystal simplifies to Px

Py

Pz

= ϵ0

 χx 0 0
0 χy 0
0 0 χz

 Ex

Ey

Ez

 (5.2)

or without the matrix notation (since it no longer offers much convenience)

P = x̂ϵ0χx Ex + ŷϵ0χy Ey + ẑϵ0χz Ez (5.3)

By assumption, χx , χy , and χz are all real. (We have dropped the double subscript;
χx stands for χxx , etc.)

5.2 Plane Wave Propagation in Crystals

We consider a plane wave with frequency ω propagating in a crystal. In a manner
similar to our previous analysis of plane waves propagating in isotropic materials,
we write as trial solutions

E = E0e i (k·r−ωt )

B = B0e i (k·r−ωt )

P = P0e i (k·r−ωt )

(5.4)

where restrictions on E0, B0, P0, and k are yet to be determined. As usual, the
phase of each wave is included in the amplitudes E0, B0, and P0, whereas k is real
in accordance with our assumption of no absorption.

We can make a quick observation about the behavior of these fields by apply-
ing Maxwell’s equations directly. Gauss’s law for electric fields requires

∇· (ϵ0E+P) = k · (ϵ0E+P) = 0 (5.5)

and Gauss’s law for magnetism gives

∇·B = k ·B = 0 (5.6)

We immediately notice the following peculiarity: From its definition, the Poynting
vector S ≡ E×B/µ0 is perpendicular to both E and B, and by (5.6) the k-vector is
perpendicular to B. However, by (5.5) the k-vector is not necessarily perpendicu-
lar to E, since in general k ·E ̸= 0 if P points in a direction other than E. Therefore,
k and S are not necessarily parallel in a crystal. In other words, the flow of energy
and the direction of the phase-front propagation can be different in anisotropic
media.



124 Chapter 5 Propagation in Anisotropic Media

Our main goal here is to relate the k-vector to the susceptibility parameters χx ,
χy , and χz . To do this, we plug our trial plane-wave fields into the wave equation
(1.40). Under the assumption Jfree = 0, we have

∇2E−µ0ϵ0
∂2E

∂t 2 =µ0
∂2P

∂t 2 +∇ (∇·E) (5.7)

Derivation of the dispersion relation in crystals

We begin by substituting the trial solutions (5.4) into the wave equation (5.7). After
carrying out the derivatives we find

k2E−ω2µ0 (ϵ0E+P) = k (k ·E) (5.8)

Inserting the constitutive relation (5.3) for crystals into (5.8) yields

k2E−ω2µ0ϵ0

[(
1+χx

)
Ex x̂+ (

1+χy
)

Ey ŷ+ (
1+χz

)
Ez ẑ

]= k (k ·E) (5.9)

This relationship is unwieldy because of the mix of electric field components that
appear in the expression. This was not a problem when we investigated isotropic
materials for which the k-vector is perpendicular to E, making the right-hand side
of the equations zero. However, there is a trick for dealing with this.

Relation (5.9) actually contains three equations, one for each dimension. Explicitly,
these equations are [

k2 − ω2

c2

(
1+χx

)]
Ex = kx (k ·E) (5.10)[

k2 − ω2

c2

(
1+χy

)]
Ey = ky (k ·E) (5.11)

and [
k2 − ω2

c2

(
1+χz

)]
Ez = kz (k ·E) (5.12)

We have replaced the constants µ0ϵ0 with 1/c2 in accordance with (1.42). We
multiply (5.10)–(5.12) respectively by kx , ky , and kz and also move the factor in
square brackets in each equation to the denominator on the right-hand side. Then
by adding the three equations together we get

k2
x (k ·E)[

k2 − ω2(1+χx )
c2

] +
k2

y (k ·E)[
k2 − ω2(1+χy )

c2

] + k2
z (k ·E)[

k2 − ω2(1+χz )
c2

] = kx Ex +ky Ey +kz Ez = (k ·E)

(5.13)
Now k ·E appears in every term and can be divided away. This gives the dispersion
relation (unencumbered by field components):

k2
x[

k2c2/ω2 − (
1+χx

)] + k2
y[

k2c2/ω2 − (
1+χy

)] + k2
z[

k2c2/ω2 − (
1+χz

)] = ω2

c2 (5.14)

As a final touch, we have multiplied the equation through by ω2/c2
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The dispersion relation (5.14) allows us to find a suitable k, given values for ω,
χx , χy , and χz . Actually, it only restricts the magnitude of k; we must still decide
on a direction for the wave to travel (i.e. we must choose the ratios between kx , ky ,
and kz ). To remind ourselves of this fact, we introduce a unit vector that points in
the direction of k

k = kx x̂+ky ŷ+kz ẑ = k
(
ux x̂+uy ŷ+uz ẑ

)= kû (5.15)

With this unit vector inserted, the dispersion relation (5.14) for plane waves in a
crystal becomes

u2
x[

k2c2/ω2 − (
1+χx

)]+ u2
y[

k2c2/ω2 − (
1+χy

)]+ u2
z[

k2c2/ω2 − (
1+χz

)] = ω2

k2c2 (5.16)

We may define refractive index as the ratio of the speed of light in vacuum
c to the speed of phase propagation in a material ω/k (see P1.9). The relation
introduced for isotropic media (i.e. (2.19) for real index) remains appropriate.
That is

n = kc

ω
(5.17)

This familiar relationship between k and ω, in the case of a crystal, depends on
the direction of propagation in accordance with (5.16).

Inspired by (2.30), we will find it helpful to introduce several refractive-index
parameters:

nx ≡√
1+χx

ny ≡
√

1+χy

nz ≡
√

1+χz

(5.18)

With these definitions (5.17)-(5.18), the dispersion relation (5.16) becomes

u2
x(

n2 −n2
x
) + u2

y(
n2 −n2

y
) + u2

z(
n2 −n2

z
) = 1

n2 (5.19)

This is called Fresnel’s equation3 (not to be confused with the Fresnel coefficients
studied in chapter 3). The relationship contains the yet unknown index n that
varies with the direction of the k-vector (i.e. the direction of the unit vector û).

After multiplying through by all of the denominators (and after a fortuitous
cancelation owing to u2

x +u2
y +u2

z = 1), Fresnel’s equation (5.19) can be rewritten

as a quadratic in n2. The two solutions are

n2 = B ±
p

B 2 −4AC

2A
(5.20)

3To better distinguish from the Fresnel coefficients, sometimes this is called Fresnel’s equation of
wave normals. See Principles of Optics, 7th Ed., Born and Wolf, p. 796.
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where
A ≡ u2

x n2
x +u2

y n2
y +u2

z n2
z

B ≡ u2
x n2

x

(
n2

y +n2
z

)
+u2

y n2
y

(
n2

x +n2
z

)+u2
z n2

z

(
n2

x +n2
y

)
C ≡ n2

x n2
y n2

z

(5.21)

The upper and lower signs (+ and −) in (5.20) give two positive solutions for n2.
The positive square root of these solutions yields two physical values for n. It turns
out that each of the two values for n is associated with a polarization direction
of the electric field, given a propagation direction k. A broader analysis carried
out in appendix 5.C renders the orientation of the electric fields, whereas here we
only show how to find the two values of n. We refer to the two indices as the slow
and fast index, since the waves associated with each propagate at speed v = c/n.

In the special cases of propagation along one of the principal axes of the
crystal, the index n takes on two of the values nx , ny , or nz , depending on which
are orthogonal to the direction of propagation.

Example 5.1

Calculate the two possible values for the index of refraction when k is in the ẑ
direction (in the crystal principal frame).

Solution: With uz = 1 and ux = uy = 0 we have

A = n2
z ; B = n2

z

(
n2

x +n2
y

)
; C = n2

x n2
y n2

z

The square-root term is then√
B 2 −4AC =

√
n4

z
(
n4

x +2n2
x n2

y +n4
y
)−4n2

x n2
y n4

z

=
√

n4
z
(
n2

x −n2
y
)2

= n2
z

(
n2

x −n2
y

)
Inserting this expression into (5.20), we find the two values for the index:

n = nx , ny

The index nx is experienced by light whose electric field points in the x-dimension,
and the index ny is experienced by light whose electric field points in the y-
dimension (see appendix 5.C ).

Figure 5.3 Spherical coordinates.

Before moving on, let us briefly summarize what has been accomplished so
far. Given values for χx , χy , and χz associated with light in a crystal at a given
frequency, you can define the indices nx , ny , and nz , according to (5.18). Next, a
direction for the k-vector is chosen (i.e. ux , uy , and uz ). This direction generally
has two values for the index of refraction associated with it, found using Fresnel’s
equation (5.20). Each index is associated with a specific polarization direction



5.3 Biaxial and Uniaxial Crystals 127

for the electric field as outlined in appendix 5.C. Every propagation direction û
has its own natural set of polarization components for the electric field. The two
polarization components travel at different speeds, even though the frequency is
the same. This is known as birefringence.

5.3 Biaxial and Uniaxial Crystals

Figure 5.4 The fast and slow re-
fractive indices (and their differ-
ence) as a function of direction
for potassium niobate (KNbO3) at
λ = 500 nm (nx = 2.22, ny = 2.35,
and nz = 2.41) .

All anisotropic crystals have certain special propagation directions where the two
values for n from Fresnel’s equation are equal. These directions are referred to as
the optic axes of the crystal. The optic axes do not necessarily coincide with the
principal axes x̂, ŷ, and ẑ. When propagation is along an optic axis, all polarization
components experience the same index of refraction. If the values of nx , ny , and
nz are all unique, a crystal will have two optic axes, and hence is referred to as a
biaxial crystal.

It is often convenient to use spherical coordinates to represent the compo-
nents of û (see to Fig. 5.3):

ux = sinθcosφ

uy = sinθ sinφ

uz = cosθ

(5.22)

Here θ is the polar angle measured from the z-axis of the crystal and φ is the
azimuthal angle measured from the x-axis of the crystal. These equations em-
phasize the fact that there are only two degrees of freedom when specifying
propagation direction (θ and φ). It is important to remember that these angles
must be specified in the frame of the crystal’s principal axes, which are often not
aligned with the faces of a cut crystal in an optical setup.

By convention, we order the principal axes for biaxial crystals so that nx <
ny < nz . Under this convention, the two optic axes occur in the x-z plane (φ= 0)
at two values of the polar angle θ, measured from the z-axis (see P5.4):

cosθ =±nx

ny

√√√√n2
z −n2

y

n2
z −n2

x
(Optic axes directions, biaxial crystal) (5.23)

The index of refraction for light traveling along either optic axis is ny . This results
from the following two facts: the optic axis is in the x-z plane and light traveling
in this plane can be polarized in the ŷ-direction; and all polarization components
for light traveling along the optic axis have the same index of refraction.

For arbitrary propagation directions the two indices of refraction are found
using Fresnel’s equation (5.20). The smaller value is commonly referred to as
the ‘fast’ index and the larger value the ‘slow’ index. Figure 5.4 shows the two
refractive indices (i.e. the solutions to Fresnel’s equation) for a biaxial crystal
plotted with color shading on the surface of a sphere. Each point on the sphere
represents a different θ and φ. The two optic axes are apparent in the plot of the
difference between nslow and nfast; the two indices coincide when propagation is
along either optic axis.
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For the remainder of this chapter, we will focus on the simpler case of uniaxial
crystals. In uniaxial crystals two of the susceptibility coefficientsχx , χy , andχz are
the same. In this case, there is only one optic axis for the crystal. By convention,
in uniaxial crystals we label the dimension that has the unique susceptibility as
the z-axis (i.e. χx = χy ̸= χz ). This makes the z-axis the optic axis. The unique
index of refraction is called the extraordinary index

nz = ne (5.24)

and the other index is called the ordinary index

nx = ny = no (5.25)

These names were coined by Huygens, one of the early scientists to study light
in crystals (see appendix 5.D). A uniaxial crystal with ne > no is referred to as a
positive crystal, and one with ne < no is referred to as a negative crystal.

Figure 5.5 The extraordinary and
ordinary refractive indices (and
their difference) as a function of
direction for beta barium borate
(BBO) at λ = 500 nm (no = 1.68
and ne = 1.56).

To calculate the index of refraction for a wave propagating in a uniaxial crystal,
we use definitions (5.24) and (5.25) along with the spherical representation of û
(5.22) in Fresnel’s equation (5.20) to find the following two values for n (see P5.5):

n = no (uniaxial crystal) (5.26)

and
n = ne(θ) ≡ none√

n2
o sin2θ+n2

e cos2θ

(uniaxial crystal) (5.27)

The angularly-dependent index function ne(θ) in (5.27) is also commonly referred
to as the extraordinary index, the same name used for the constant ne. While this
nomenclature can be confusing, the practice is so common that we will perpet-
uate it here. We will write ne(θ) when the angle-dependent function specified
by (5.27) is required, and write ne in formulas where the constant (5.24) is called
for (as in the right-hand side of (5.27)). Notice that ne(θ) depends only on the
polar angle θ (measured from the optic axis ẑ) and not the azimuthal angle φ.
Figure 5.5 shows the two refractive indices (5.26) and (5.27) as a function θ and φ.
Since ne(θ) has no φ dependence and no is constant, the variation with direction
is much simpler than for the biaxial case.

For plane waves propagating at θ = 0 with k directed exactly along the optic
axis, (5.27) gives ne(θ = 0) = no. This index matches the index given by (5.26)
so that both polarization components experience same index no. For plane
waves propagating with θ = π/2 (i.e. in the plane perpendicular to the optic
axis) the polarization component along ẑ has index ne(θ =π/2) = ne according to
(5.27), while the component perpendicular to ẑ experiences index no in accord
with (5.26). As outlined in appendix 5.C, for arbitrary propagation directions the
index no corresponds to the electric field polarization component that points
perpendicular to the plane containing û and ẑ, while the index ne(θ) corresponds
to field polarization component that lies within the plane containing û and ẑ. In
this case, the polarization component is directed partially along the optic axis (i.e.
it has a z-component). That is why (5.27) gives a refractive index that is a mixture
of no and ne.
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5.4 Refraction at a Uniaxial Crystal Surface

Next we consider refraction as light enters a uniaxial crystal. Snell’s law (3.7)
describes the connection between the k-vectors incident upon and transmitted
through the surface. We must consider separately the portion of the light that
experiences the ordinary index and the portion that experiences the extraordinary
index. Because of the different indices, the ordinary and extraordinary polarized
light refract into the crystal at two different angles; they travel at two different
velocities in the crystal; and they have two different wavelengths in the crystal.

If we assume that the index outside of the crystal is one, Snell’s law for the
ordinary polarization is

sinθi = no sinθt (ordinary polarized light) (5.28)

where no is the ordinary index inside the crystal. The extraordinary polarized
light also obeys Snell’s law, but now the index of refraction in the crystal depends
on direction of propagation inside the crystal relative to the optic axis. Snell’s law
for the extraordinary polarization is

sinθi = ne(θ′)sinθt (extraordinary polarized light) (5.29)

where θ′ is the angle between the optic axis inside the crystal and the direction of
propagation in the crystal (given by θt in the plane of incidence). When the optic
axis is at an arbitrary angle with respect to the surface the relationship between
θ′ and θt is cumbersome. We will examine Snell’s law only for the specific case
when the optic axis is perpendicular to the crystal surface, for which θt = θ′.

  

z-axis

y-axis

x-axis (directed into page)

  

  

Figure 5.6 Propagation of light in a
uniaxial crystal with its optic axis
perpendicular to the surface.

Example 5.2

Examine Snell’s law for a uniaxial crystal with optic axis perpendicular to the
surface.

Solution: Refer to Fig. 5.6. With the optic axis perpendicular to the surface, if the
light hits the crystal surface straight on, the index of refraction is no, regardless
of the orientation of polarization since θ′ = θt = 0. When the light strikes the
surface at an angle, s-polarized light continues to experience the index no, while
p-polarized light experiences the extraordinary index ne(θt ). 4

When we insert (5.27) into Snell’s law (5.29) with θ′ = θt , the expression can be
inverted to find the transmitted angle θt in terms of θi (see P5.6):

tanθt = ne sinθi

no

√
n2

e − sin2θi

(extraordinary polarized, optic axis ⊥ surface) (5.30)

As strange as this formula may appear, it is Snell’s law, but with an angularly
dependent index.

4The correspondence between s and p and ordinary and extraordinary polarization components
is specific to the orientation of the optic axis in this example. For arbitrary orientations of the
optic axis with respect to the surface, the ordinary and extraordinary components will generally be
mixtures of s and p polarized light.
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5.5 Poynting Vector in a Uniaxial Crystal

When an object is observed through a crystal (acting as a window), the energy
associated with ordinary and extraordinary polarized light follow different paths,
giving rise to two different images. This phenomenon is one of the more com-
monly observed manifestations of birefringence. Since the Poynting vector dic-
tates the direction of energy flow, it is the direction of S that determines the
separation of the double image seen when looking through a birefringent crystal.

Snell’s law dictates the connection between the directions of the incident
and transmitted k-vectors. The Poynting vector S for purely ordinary polarized
light points in the same direction as the k-vector, so the direction of energy flow
for ordinary polarized light also obeys Snell’s law. However, for extraordinary
polarized light, the Poynting vector S is not parallel to k (recall the discussion in
connection with (5.5) and (5.6)). Thus, the energy flow associated with extraor-
dinary polarized light does not obey Snell’s law. When Christiaan Huygens saw
this in the 1600s, one can imagine him exclaiming “how extraordinary!” Huygens’
method for describing the phenomenon is outlined appendix 5.D.

To analyze extraordinary polarized light, we would like to develop an expres-
sion analogous to Snell’s law, but which applies to S rather than to k. This then
describes the direction that the energy associated with extraordinary rays takes
upon entering the crystal. First, k inside the crystal is found from Snell’s law (5.29).
In general, the electric field E may be obtained from (5.60) and then the magnetic
field via B = (k×E)/ω, to evaluate S = E×B/µ0. In general, this process is best
done numerically, since Snell’s law (5.29) for extraordinary polarized light usually
does not have simple analytic solutions.

Example 5.3

Find a relationship between direction of the Poynting Vector in a uniaxial crystal
and the angle of incidence in the special case where the optic axis is perpendicular
to the surface.

Solution: To find the direction of energy flow, we must calculate S = E×B/µ0. We
will need to know E associated with ne(θ). We can obtain E from the procedures
outlined in appendix 5.C. Equivalently, we can obtain it from the constitutive
relation (5.3) with the definitions (5.18):

ϵ0E+P = ϵ0

[(
1+χx

)
Ex x̂+ (

1+χy
)

Ey ŷ+ (
1+χz

)
Ez ẑ

]
= ϵ0

(
n2

oEx x̂+n2
oEy ŷ+n2

eEz ẑ
) (5.31)

Let the k-vector lie in the y-z plane. We may write it as k = k
(
ŷsinθt + ẑcosθt

)
.

Then the ordinary component of the field points in the x-direction, while the
extraordinary component lies in the y-z plane.

Equation (5.31) requires

k · (ϵ0E+P) = k
(
ŷsinθt + ẑcosθt

) ·ϵ0

(
n2

oEx x̂+n2
oEy ŷ+n2

eEz ẑ
)

= ϵ0k
(
n2

oEy sinθt +n2
eEz cosθt

)
= 0

(5.32)
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Therefore, the y and z components of the extraordinary field are related through

Ez =−n2
oEy

n2
e

tanθt (5.33)

We may write the extraordinary polarized electric field as

E = Ey

(
ŷ− ẑ

n2
o

n2
e

tanθt

)
e i (k·r−ωt ) (extraordinary polarized) (5.34)

The associated magnetic field (see (2.56)) is

B = k×E

ω
=

k
(
ŷsinθt + ẑcosθt

)×Ey

(
ŷ− ẑ n2

o

n2
e

tanθt

)
ω

e i (k·r−ωt )

=−x̂
kEy

ω

(
n2

o

n2
e

sinθt tanθt +cosθt

)
e i (k·r−ωt )

(extraordinary polarized) (5.35)

The time-averaged Poynting vector then becomes

〈S〉t =
〈

Re{E}×Re

{
B

µ0

}〉
t

=−k|Ey |2
µ0ω

(
ŷ− ẑ

n2
o

n2
e

tanθt

)
×

(
n2

o

n2
e

sinθt tanθt +cosθt

)
x̂
〈

cos2(k · r−ωt +φEy )
〉

t

= k|Ey |2
2µ0ω

(
n2

o

n2
e

sinθt tanθt +cosθt

)(
ẑ+ ŷ

n2
o

n2
e

tanθt

)
(extraordinary polarized) (5.36)

Let us label the direction of the Poynting vector with the angle θS. By definition,
the tangent of this angle is the ratio of the two vector components of S:

tanθS ≡ Sy

Sz
= n2

o

n2
e

tanθt (extraordinary polarized) (5.37)

While the k-vector is characterized by the angle θt , the Poynting vector is char-
acterized by the angle θS. Combining (5.30) and (5.37), we can connect θS to the
incident angle θi :

tanθS = no sinθi

ne

√
n2

e − sin2θi

(extraordinary polarized) (5.38)

As we noted in the last example, we have the case where ordinary polarized light is
s-polarized light, and extraordinary polarized light is p-polarized light due to our
specific choice of orientation for the optic axis in this section. In general, the s- and
p-polarized portions of the incident light can each give rise to both extraordinary
and ordinary rays.
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Appendix 5.A Symmetry of Susceptibility Tensor

Here we show that the assumption of a nonabsorbing (and not optically active)
medium implies that the susceptibility tensor is symmetric. We assume that P is
due to a single species of electron, so that we have P = N p. Here N is the number
of microscopic dipoles per volume and p = qere, where qe is the charge on the
electron and re is the microscopic displacement of the electron. The force on this
electron due to the electric field is given by F = Eqe. With these definitions, we
can use (5.1) to write a connection between the force due to a static E and the
electron displacement:

N qe

 xe

ye

ze

= ϵ0

qe

 χxx χx y χxz

χy x χy y χy z

χzx χz y χzz

 Fx

Fy

Fz

 (5.39)

The column vector on the left represents the components of the displacement
re. We next invert (5.39) to find the force of the electric field on an electron as a
function of its displacement5

 Fx

Fy

Fz

=
 kxx kx y kxz

ky x ky y ky z

kzx kz y kzz

 xe

ye

ze

 (5.40)

where  kxx kx y kxz

ky x ky y ky z

kzx kz y kzz

≡ N q2
e

ϵ0

 χxx χx y χxz

χy x χy y χy z

χzx χz y χzz

−1

(5.41)

Here the various ki j represent spring constants as opposed to components of
wave vectors.

The total work done on an electron in moving it to its displaced position is
given by

W =
∫

path
F(r′) ·dr′ (5.42)

While there are many possible paths for getting the electron to any specific dis-
placement (each path specified by a different history of the electric field), the
work done along any of these paths must be the same if the system is conservative
(i.e. no absorption). For example, if the final displacement of r = xex̂+ yeŷ we
could have the following two paths:

(0,0,0) (0,0,0)

Path 1

Path 2

5This inversion assumes the field changes slowly so the forces on the electron are always es-
sentially balanced. This is not true for optical fields, but the proof gives the right flavor for why
conservation of energy results in the symmetry. A more formal proof that doesn’t make this as-
sumption can be found in Principles of Optics, 7th Ed., Born and Wolf, pp. 790-791.
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We can use (5.40) in (5.42) to calculate the total work done on the electron
along path 1:

W =
∫ xe

0
Fx (x ′, y ′ = 0, z ′ = 0)d x ′+

∫ ye

0
Fy (x ′ = xe, y ′, z ′ = 0)d y ′

=
∫ xe

0
kxx x ′ d x ′+

∫ ye

0
(ky x xe +ky y y ′) d y ′

= kxx

2
x2

e +ky x xe ye +
ky y

2
y2

e

If we take path 2, the total work is

W =
∫ ye

0
Fy (x ′ = 0, y ′, z ′ = 0)d y ′+

∫ xe

0
Fx (x ′, y ′ = ye, z ′ = 0)d x ′

=
∫ ye

0
ky y y ′ d y ′+

∫ xe

0
(kxx x ′+kx y ye) d x ′

= ky y

2
y2

e +kx y xe ye + kxx

2
x2

e

Since the work must be the same for these two paths, we clearly have kx y = ky x .
Similar arguments for other pairs of dimensions ensure that the matrix of k
coefficients is symmetric. From linear algebra, we learn that if the inverse of a
matrix is symmetric then the matrix itself is also symmetric. When we combine
this result with the definition (5.41), we see that the assumption of no absorption
requires the susceptibility matrix to be symmetric.

Appendix 5.B Rotation of Coordinates

In this appendix, we go through the labor of showing that (5.1) can always be
written as (5.3) via rotations of the coordinate system, given that the susceptibility
tensor is symmetric (i.e. χi j =χ j i ). We have

P = ϵ0χE (5.43)

where

E ≡
 Ex

Ey

Ez

 P ≡
 Px

Py

Pz

 χ≡
 χxx χx y χxz

χx y χy y χy z

χxz χy z χzz

 (5.44)

Our task is to find a new coordinate system x ′, y ′, and z ′ for which the susceptibil-
ity tensor is diagonal. That is, we want to choose x ′, y ′, and z ′ such that

P′ = ϵ0χ
′E′, (5.45)

where

E′ ≡

 E ′
x ′

E ′
y ′

E ′
z ′

 P′ ≡

 P ′
x ′

P ′
y ′

P ′
z ′

 χ′ ≡

 χ′x ′x ′ 0 0
0 χ′y ′y ′ 0

0 0 χ′z ′z ′

 (5.46)
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To arrive at the new coordinate system, we are free to make pure rotation trans-
formations. In a manner similar to (6.29), a rotation through an angle γ about the
z-axis, followed by a rotation through an angle β about the resulting y-axis, and
finally a rotation through an angle α about the new x-axis, can be written as

R≡
 R11 R12 R13

R21 R22 R23

R31 R32 R33


=

 1 0 0
0 cosα sinα
0 −sinα cosα

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1


=

 cosβcosγ cosβsinγ sinβ
−cosαsinγ− sinαsinβcosγ cosαcosγ− sinαsinβsinγ sinαcosβ
sinαsinγ−cosαsinβcosγ −sinαcosγ−cosαsinβsinγ cosαcosβ


(5.47)

The matrix R produces an arbitrary rotation of coordinates in three dimensions.
Specifically, we can write:

E′ =RE

P′ =RP
(5.48)

These transformations can be inverted to give

E =R−1E′

P =R−1P′ (5.49)

where

R−1 =
 cosβcosγ −cosαsinγ− sinαsinβcosγ sinαsinγ−cosαsinβcosγ

cosβsinγ cosαcosγ− sinαsinβsinγ −sinαcosγ−cosαsinβsinγ
sinβ sinαcosβ cosαcosβ


=

 R11 R21 R31

R12 R22 R32

R13 R23 R33

=RT (5.50)

Note that the inverse of the rotation matrix is the same as its transpose, an impor-
tant feature that we exploit in what follows.

Upon inserting (5.49) into (5.43) we have

R−1P′ = ϵ0χR−1E′ (5.51)

or
P′ = ϵ0RχR−1E′ (5.52)
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From this equation we see that the new susceptibility tensor we seek for (5.45) is

χ′ ≡RχR−1

=
 R11 R12 R13

R21 R22 R23

R31 R32 R33

 χxx χx y χxz

χx y χy y χy z

χxz χy z χzz

 R11 R21 R31

R12 R22 R32

R13 R23 R33



=

 χ′x ′x ′ χ′x ′y ′ χ′x ′z ′

χ′x ′y ′ χ′y ′y ′ χ′y ′z ′

χ′x ′z ′ χ′y ′z ′ χ′z ′z ′

 (5.53)

We have expressly indicated that the off-diagonal terms of χ′ are symmetric (i.e.
χ′i j =χ′j i ). This can be verified by performing the multiplication in (5.53). It is a

consequence of χ being symmetric and R−1 being equal to RT

The three off-diagonal elements of χ′ (appearing both above and below the
diagonal) are found by performing the matrix multiplication in the second line
of (5.53). The specific expressions for these three elements are not particularly
enlightening. The important point is that we can make all three of them equal to
zero since we have three degrees of freedom in the angles α, β, and γ. Although,
we do not expressly solve for the angles, we have demonstrated that it is always
possible to set

χ′x ′y ′ = 0

χ′x ′z ′ = 0

χ′y ′z ′ = 0

(5.54)

This justifies (5.3).

Appendix 5.C Electric Field in a Crystal

To determine the direction of the electric field associated with each value of n, we
return to (5.10), (5.11), and (5.12) in the analysis in section 5.2. These equations
can be written in matrix format as6


ω2

c2

(
1+χx

)−k2
y −k2

z kx ky kx kz

kx ky
ω2

c2

(
1+χy

)−k2
x −k2

z ky kz

kx kz ky kz
ω2

c2

(
1+χz

)−k2
x −k2

y


 Ex

Ey

Ez

= 0

(5.55)

where we have used k2
x +k2

y +k2
z = k2. We can divide every element by k2 and

employ the definitions (5.15), (5.17), and (5.18) to make this matrix equation look

6A. Yariv and P. Yeh, Optical Waves in Crystals, Sect. 4.2 (New York: Wiley, 1984).
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slightly nicer:
n2

x

n2 −u2
y −u2

z ux uy ux uz

ux uy
n2

y

n2 −u2
x −u2

z uy uz

ux uz uy uz
n2

z

n2 −u2
x −u2

y


 Ex

Ey

Ez

= 0 (5.56)

For (5.56) to have a nontrivial solution (i.e. nonzero fields), the determinant of the
matrix must be zero. Imposing this requirement is an equivalent way to derive
Fresnel’s equation (5.19) for n.

Given a direction for û and a value for n (from Fresnel’s equation), we can use
(5.56) to determine the direction of the electric field associated with that index. It
is left as an exercise to show that in nondegenerate cases7 (i.e. n ̸= nx ,ny ,nz ), the
appropriate field direction for a value of n is given by

 Ex

Ey

Ez

∝



ux

n2 −n2
x

uy

n2 −n2
y

uz

n2 −n2
z

 (n ̸= nx ,ny ,nz ) (5.57)

This is a proportionality rather than an equation because Maxwell’s equations
only specify the direction of E—we are free to choose the amplitude. Because
Fresnel’s equation gives two values for n, (5.57) specifies two distinct polarization
components associated with each propagation direction û. These polarization
components form a natural basis for describing light propagation in a crystal.
When light is composed of a mixture of these two polarizations, the two polariza-
tion components experience different indices of refraction.

If any of the components of û (i.e. ux , uy , or uz ) is precisely zero, the corre-
sponding entry in (5.57) yields a zero-over-zero situation. This happens when at
least one of the dimensions in (5.56) becomes decoupled from the others. In these
cases, one can re-solve (5.56) for the polarization directions as in the following
example.

Example 5.4

Determine the directions of the two polarization components associated with light
propagating in the û = ẑ direction. (Compare with Example 5.1.)

Solution: In this case we have ux = uy = 0, so as noted above, we have to go back
to (5.56) and re-solve. The set of equations becomes

n2
x

n2 −1 0 0

0
n2

y

n2 −1 0

0 0
n2

z
n2


 Ex

Ey

Ez

= 0 (5.58)

7In a biaxial crystal, the requirement n ̸= nx ,ny ,nz is ensured if ux ,uy ,uz ̸= 0.



5.C Electric Field in a Crystal 137

Notice that all three dimensions are decoupled in this system (i.e. there are no
off-diagonal terms). In Example 5.1 we found that the two values of n associated
with û = ẑ are nx and ny . If we use n = nx in our set of equations, we have

0 0 0

0
n2

y

n2
x
−1 0

0 0
n2

z

n2
x


 Ex

Ey

Ez

= 0

Assuming nx and ny are unique so that ny /nx ̸= 1, these equations require Ey =
Ez = 0 but allow Ex to be nonzero. This proves our earlier assertion that the index
nx is associated with light polarized in the x-dimension in the special case of û = ẑ.
Similarly, when ny is inserted into (5.58), we find that it is associated with light
polarized in the y-dimension.

(a) Polarization Direction for Slow Index

(b) Polarization Direction for Fast Index

(c) Angle Between Polarization Components

Figure 5.7 Polarization direction
associated with the two values of n
in potassium niobate (KNbO3) at
λ = 500 nm (nx = 2.22, ny = 2.34,
and nz = 2.41) and φ=π/4. Frame
(c) shows the angle between the
two polarization components.

We can use (5.57) to study the behavior of polarization direction as the direc-
tion of propagation varies. Figure 5.7 shows plots of the polarization direction (i.e.
normalized Ex , Ey , and Ez ) in potassium niobate as the propagation direction is
varied. The plot is created by inserting the spherical representation of û (5.22)
into Fresnel’s equation (5.20) for a chosen sign of the ±, and then inserting the re-
sulting n into (5.57) to find the associated electric field. As we saw in Example 5.4,
at θ = 0 the light associated with the slow index is polarized along the y-axis and
the light associated with the fast index is polarized along the x-axis.

In Fig. 5.7(c) we have plotted the angle between the two polarization com-
ponents. At θ = 0, the two polarization components are 90◦ apart, as you might
expect. However, notice that in other propagation directions the two linear polar-
ization components are not precisely perpendicular. Even so, the two polarization
components of E are orthogonal in a mathematical sense,8 so that they still com-
prise a useful basis for decomposing the light field.

Determining the Fields in a Uniaxial Crystal.

To find the directions of the electric field for light that experiences the ordinary
index of refraction in a uniaxial crystal, we insert n = no into the requirement
(5.56), and solve for the allowed fields (see P5.11) to find

Eo(û) ∝
 −sinφ

cosφ
0

 (5.59)

This field component is associated with the ordinary wave. Just as in an isotropic
medium such as glass, the index of refraction for light with this polarization does
not vary with θ. The polarization component associated with ne(θ) is found by

8The two components of the electric displacement vector D = ϵ0E+P remain perpendicular.
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using (5.57):

Ee(û) ∝



sinθcosφ

n2
e(θ)−n2

o

sinθ sinφ

n2
e(θ)−n2

o

cosθ

n2
e(θ)−n2

e


(5.60)

Notice that this polarization component is partially directed along the optic axis
(i.e. it has a z-component), and it is not perpendicular to k since û ·Ee(û) ̸= 0 (see
P5.12). It is, however, perpendicular to the ordinary polarization component, since
Ee ·Eo = 0.

Notice that when θ = 0, (5.27) reduces to n = no so that both indices are the same.
On the other hand, if θ =π/2 then (5.27) reduces to n = ne. These limits must be
approached carefully in (5.60).

Appendix 5.D Huygens’ Elliptical Construct for a Uniaxial
Crystal

In 1690 Christian Huygens developed a way to predict the direction of extraordi-
nary rays in a crystal by examining an elliptical wavelet. The point on the elliptical
wavelet that propagates along the optic axis is assumed to experience the index
ne. The point on the elliptical wavelet that propagates perpendicular to the optic
axis is assumed to experience the index no. It turns out that Huygens’ approach
agreed with the direction energy propagation (5.38) (as opposed to the direction
of the k-vector). This was quite satisfactory in Huygens’ day (except that he was
largely ignored for a century, owing to Newton’s corpuscular theory) since the
direction of energy propagation is what an observer sees.

  

y-axis

Figure 5.8 Elliptical wavelet.

Consider a plane wave entering a uniaxial crystal with the optic axis perpen-
dicular to the surface. In Huygens’ point of view, each point on a wavefront acts
as a wavelet source which combines with neighboring wavelets to preserve the
overall plane wave pattern. Inside the crystal, the wavelets propagate in the shape
of an ellipse. The equation for an elliptical wave front after propagating during a
time t is

y2

(ct/ne)2 + z2

(ct/no)2 = 1 (5.61)

After rearranging, the equation of the ellipse can be written as

z = ct

no

√
1− y2

(ctne)2 (5.62)

In order to have the wavelet joint neatly with other wavelets to build a plane
wave, the wavefront of the ellipse must be parallel to a new wavefront entering
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the surface at a distance ct/sinθi above the original point. This distance is
represented by the hypotenuse of the right triangle seen in Fig. 5.8. Let the point
where the wavefront touches the ellipse be denoted by

(
y, z

)= (z tanθS, z). The
slope (rise over run) of the line that connects these two points is then

d z

d y
=− z

ct/sinθi − z tanθS
(5.63)

At the point where the wavefront touches the ellipse (i.e.
(
y, z

)= (z tanθS, z)), the
slope of the curve for the ellipse is

d z

d y
= −yn2

e

noct

√
1− y2

(ct/ne)2

=−n2
e y

n2
oz

=−n2
e

n2
o

tanθS (5.64)

We would like these two slopes to be the same. We therefore set them equal to
each other:

−n2
e

n2
o

tanθS =− z

ct/sinθi − z tanθS
⇒ ct

z

n2
e

n2
o

tanθS

sinθi
= n2

e

n2
o

tan2θS +1 (5.65)

If we evaluate (5.61) for the point
(
y, z

)= (z tanθS, z), we obtain

ct

z
= no

√
n2

e

n2
o

tan2θS +1 (5.66)

Upon substitution of this into (5.65) we arrive at

n2
e

no

tanθS

sinθi
=

√
n2

e

n2
o

tan2θS +1 ⇒ n4
e

n2
o

tan2θS

sin2θi
= n2

e

n2
o

tan2θS +1 (5.67)

⇒
[

n2
e

sin2θi
−1

]
tan2θS =

n2
o

n2
e
⇒ tanθS = no sinθi

ne

√
n2

e − sin2θi

(5.68)

This agrees with (5.38) as anticipated. Again, Huygens’ approach obtained the
correct direction of the Poynting vector associated with the extraordinary wave.
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Exercises

Exercises for 5.2 Plane Wave Propagation in Crystals

P5.1 (a) Solve Fresnel’s equation (5.19) to find the two values of n2 associated
with a given û. In other words, fill in the steps leading to (5.20)–(??).

(b) Point out that both solutions for n2 are real and positive, when nx ,
ny , and nz are real and B 2 −4AC ≥ 0 in (5.20). Show that B 2 −4AC ≥ 0
in the following special cases: Case I: ux =±1, uy = 0, uz = 0; Case II:
ux =±1/

p
3, uy =±1/

p
3, uz =±1/

p
3.

HINT: First manipulate (5.19) into the form

[(
u2

x +u2
y +u2

z

)
−1

]
n6

+
[(

n2
x +n2

y +n2
z

)
−u2

x

(
n2

y +n2
z

)
−u2

y

(
n2

x +n2
z

)−u2
z

(
n2

x +n2
y

)]
n4

−
[(

n2
x n2

y +n2
x n2

z +n2
y n2

z

)
−u2

x n2
y n2

z −u2
y n2

x n2
z −u2

z n2
x n2

y

]
n2 +n2

x n2
y n2

z = 0

Substitute 1 = u2
x +u2

y +u2
z in several places.

P5.2 Show that Fresnel’s equation (5.19) may equivalently be written as.

u2
x(

1
n2 − 1

n2
x

) + u2
y(

1
n2 − 1

n2
y

) + u2
z(

1
n2 − 1

n2
z

) = 0

HINT: Use 1 = u2
x +u2

y +u2
z .

P5.3 Suppose you have a crystal with nx = 1.5, ny = 1.6, and nz = 1.7. Use
Fresnel’s equation to determine what the two indices of refraction are
for a k-vector in the crystal along the û = (x̂+2ŷ+3ẑ)/

p
14 direction.

Exercises for 5.3 Biaxial and Uniaxial Crystals

P5.4 (a) Show that for a biaxial crystal, the directions of the optic axes are
given by (5.23) in the x-z plane.

(b) Show that (5.23) only makes sense if the axes are chosen such that
ny is in between nx and nz . Does the formula work if nx ≥ ny ≥ nz ?
How do the values of θ relate to the case when nz ≥ ny ≥ nx ?

HINT: Use spherical coordinates as in (5.22). The two indices are the
same when B 2 −4AC = 0. Under the assumption that ny lies between
nx and nz , B 2 −4AC = 0 can only be satisfied when φ= 0.
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P5.5 Use definitions (5.24) and (5.25) along with the spherical representa-
tion of û (5.22) in Fresnel’s equation (5.20) to calculate the two values
for the index in a uniaxial crystal (i.e. (5.26) and (5.27)).

HINT: First show that

A = n2
o sin2θ+n2

e cos2θ

B = n2
on2

e +n4
o sin2θ+n2

en2
o cos2θ

C = n4
on2

e

and then use these expressions to evaluate Fresnel’s equation.

Exercises for 5.4 Refraction at a Uniaxial Crystal Surface

P5.6 Derive (5.30).

P5.7 Suppose you have a quartz plate (a uniaxial crystal) with its optic axis
oriented perpendicular to the surfaces. The indices of refraction for
quartz are no = 1.54424 and ne = 1.55335. A plane wave with wave-
length λvac = 633 nm passes through the plate. After emerging from
the crystal, there is a phase difference∆φ between the two polarization
components of the plane wave, and this phase difference depends on
incident angle θi . Use a computer to plot ∆φ as a function of incident
angle from zero to 90◦ for a plate with thickness d = 0.96 mm .

  

Figure 5.9 Diagram for P5.7.

HINT: For s-polarized light, show that the number of wavelengths that
fit in the plate is d

(λvac/no)cosθ(s)
t

. For p-polarized light, show that the

number of wavelengths that fit in the plate and the extra leg δ outside
of the plate (see Fig. 5.9) is d

(λvac/np )cosθ(p)
t

+ δ
λvac

, where

δ= d
[

tanθ(s)
t − tanθ(p)

t

]
sinθi

and np is given by (5.27). Find the difference between these expressions
and multiply by 2π to find ∆φ.

L5.8 In the laboratory, send a HeNe laser (λvac = 633 nm) through two
crossed polarizers, oriented at 45◦ and 135◦. Place the quartz plate
described in P5.7 between the polarizers on a rotation stage. Now
equal amounts of s- and p-polarized light strike the crystal as it is
rotated from normal incidence. (video)

Phase Difference

Dim spots

Bright spots

Figure 5.10 Plot for P5.7 and L 5.8.

Laser

Polarizer Quartz Crystal
on a rotation stage

Polarizer Screen

Figure 5.11 Schematic for L 5.8.

https://vimeo.com/717097157
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If the phase shift between the two paths discussed in P5.7 is an odd
integer times π, the polarization direction of the light transmitted
through the crystal is rotated by 90◦, and the maximum transmission
through the second polarizer results. (In this configuration, the crystal
acts as a half-wave plate, which we discuss in Chapter 6.) If the phase
shift is an even integer times π, then the polarization is rotated by 180◦

and minimum transmission through the second polarizer results. Plot
these measured maximum and minimum points on your computer-
generated graph of the previous problem.

Exercises for 5.5 Poynting Vector in a Uniaxial Crystal

P5.9 A calcite crystal is cut and polished such that the optic axis is perpendic-
ular to the surface.9 If 590 nm light enters with incident angle θi = 45◦,
what is the difference between the transmitted angles of the Poynting
vector for s- and p-polarized light? Calcite is a uniaxial crystal with
no = 1.658 and ne = 1.486 at this wavelength.

Exercises for 5.C Electric Field in a Crystal

P5.10 Check that (5.57) is a solution to (5.56).

P5.11 (a) Show that the field polarization component associated with n = no

in a uniaxial crystal is given by (5.59)by substituting this value for n
into (5.56) and determining what combination of field components are
allowable.

(b) Show that the field is directed perpendicular to the plane containing
û and ẑ.

P5.12 (a) Show that the electric field for extraordinary polarized light Ee(û) in
a uniaxial crystal is not perpendicular to k (i.e. û).

(b) Show that the ordinary polarization component Eo(û) is perpendic-
ular to k.

9This is called an a-cut. Calcite cleaves naturally along its rhombohedron form, which is not the
same as an a-cut.



Chapter 6

Polarization of Light

When the direction of the electric field of light oscillates in a regular, predictable
fashion, we say that the light is polarized. Polarization describes the direction
of the oscillating electric field, a distinct concept from dipoles per volume in a
material P – also called polarization. In this chapter, we develop a formalism
for describing polarized light and the effect of devices that modify polarization.
If the electric field oscillates in a plane, we say that it is linearly polarized. The
electric field can also spiral around while a plane wave propagates, and this is
called circular or elliptical polarization. There is a convenient way for keeping
track of polarization using a two-dimensional Jones vector.

Figure 6.1 Animation showing
different polarization states of
light.

Many devices can affect polarization such as polarizers and wave plates. Their
effects on a light field can be represented by 2×2 Jones matrices that operate on
the Jones vector representing the light. A Jones matrix can describe, for example,
a polarizer oriented at an arbitrary angle or it can characterize the influence of
a wave plate, which is a device that introduces a relative phase between two
components of the electric field.

In this chapter, we will also see how reflection and transmission at a material
interface influences field polarization. As we saw previously, s-polarized light
can acquire a phase lag or phase advance relative to p-polarized light. This is
especially true at metal surfaces, which have complex indices of refraction. The
Fresnel coefficients studied in chapters 3 and 4 can be conveniently incorporated
into a Jones matrix to keep track of their influence polarization. Ellipsometry,
outlined in appendix 6.A, is the science of characterizing optical properties of
materials through an examination of these effects.

Throughout this chapter, we consider light to have well characterized polar-
ization. However, most common sources of light (e.g. sunlight or a light bulb)
have an electric-field direction that varies rapidly and randomly. Such sources
are commonly referred to as unpolarized. It is common to have a mixture of
unpolarized and polarized light, called partially polarized light. The Jones vector
formalism used in this chapter is inappropriate for describing the unpolarized
portions of the light. In appendix 6.B we describe a more general formalism for
dealing with light having an arbitrary degree of polarization.

143

https://vimeo.com/717105862
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6.1 Linear, Circular, and Elliptical Polarization

Consider the plane-wave solution to Maxwell’s equations given by

E (r, t ) = E0e i (k·r−ωt ) (6.1)

The wave vector k specifies the direction of propagation. We neglect absorption
so that the refractive index is real and k = nω/c = 2πn/λvac (see (2.19)–(2.24)). In
an isotropic medium we know that k and E0 are perpendicular, but even after the
direction of k is specified, we are still free to have E0 point anywhere in the two
dimensions perpendicular to k. If we orient our coordinate system with the z-axis
in the direction of k, we can write (6.1) as

E (z, t ) = (
Ex x̂+Ey ŷ

)
e i (kz−ωt ) (6.2)

As always, only the real part of (6.2) is physically relevant. The complex ampli-
tudes Ex and Ey keep track of the phase of the oscillating field components. In
general the complex phases of Ex and Ey can differ, so that the wave in one of the
dimensions lags or leads the wave in the other dimension.

The relationship between Ex and Ey describes the polarization of the light.
For example, if Ey is zero, the plane wave is said to be linearly polarized along
the x-dimension. Linearly polarized light can have any orientation in the x–y
plane, and it occurs whenever Ex and Ey have the same complex phase (or phases
differing by π). For our purposes, we will take the x-dimension to be horizontal
and the y-dimension to be vertical unless otherwise noted.

x

+

y

z

Figure 6.2 The combination of
two orthogonally polarized plane
waves that are out of phase results
in elliptically polarized light. Here
we have left circularly polarized
light created as specified by (6.3).

As an example, suppose Ey = i Ex , where Ex is real. The y-component of the
field is then out of phase with the x-component by the factor i = e iπ/2. Taking the
real part of the field (6.2) we get

E (z, t ) = Re
[

Ex e i (kz−ωt )
]

x̂+Re
[

e iπ/2Ex e i (kz−ωt )
]

ŷ

= Ex cos(kz −ωt ) x̂+Ex cos(kz −ωt +π/2) ŷ

= Ex
[
cos(kz −ωt ) x̂− sin(kz −ωt ) ŷ

] (left circular) (6.3)

In this example, the field in the y-dimension lags in time behind the field in the
x-dimension by a quarter cycle. That is, the behavior seen in the x-dimension
happens in the y-dimension a quarter cycle later. The field never goes to zero
simultaneously in both dimensions. In fact, in this example the strength of the
electric field is constant, and it rotates in a circular pattern in the x-y dimensions.
For this reason, this type of field is called circularly polarized. Figure 6.2 graph-
ically shows the two linear polarized pieces in (6.3) adding to make circularly
polarized light.

If we view a circularly polarized light field throughout space at a frozen instant
in time (as in Fig. 6.2), the electric field vector spirals as we move along the z-
dimension. If the sense of the spiral (with time frozen) matches that of a common
wood screw oriented along the z-axis, the polarization is called right handed. (It
makes no difference whether the screw is flipped end for end.) If instead the field
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spirals in the opposite sense, then the polarization is called left handed. The field
shown in Fig. 6.2 is an example of left-handed circularly polarized light.

An equivalent way to view the handedness convention is to imagine the light
impinging on a screen as a function of time. The field of a right-handed circularly
polarized wave rotates counterclockwise at the screen, when looking along the k
direction. The field rotates clockwise for a left-handed circularly polarized wave.

Linearly polarized light can become circularly or, in general, elliptically po-
larized after reflection from a metal surface if the incident light has both s- and
p-polarized components. A good experimentalist working with light needs to
know this. Reflections from multilayer dielectric mirrors can also exhibit these
phase shifts.

6.2 Jones Vectors for Representing Polarization

R. Clark Jones (1916–2004, American)
was born in Toledo Ohio. He was one
of six high school seniors to receive a
Harvard College National Prize Fellow-
ship. He earned both his undergraduate
(summa cum laude 1938) and Ph.D.
degrees from Harvard (1941). After
working several years at Bell Labs, he
spent most of his professional career
at Polaroid Corporation in Cambridge
MA, until his retirement in 1982. He is
well-known for a series of papers on
polarization published during the period
1941-1956. He also contributed greatly
to the development of infrared detectors.
He was an avid train enthusiast, and
even wrote papers on railway engineer-
ing. See J. Opt. Soc. Am. 63, 519-522
(1972). Also see SPIE oemagazine,
p. 52 (Aug. 2004).

In 1941, R. Clark Jones introduced a two-dimensional matrix algebra that is useful
for keeping track of light polarization and the effects of optical elements that
influence polarization.1 The algebra deals with light having a definite polarization,
such as plane waves. It does not apply to unpolarized or partially polarized light
(e.g. sunlight). For partially polarized light, a four-dimensional algebra known as
Stokes calculus is used (see Appendix 6.B).

In preparation for introducing Jones vectors, we explicitly write the complex
phases of the field components in (6.2) as

E (z, t ) =
(
|Ex |e iφx x̂+|Ey |e iφy ŷ

)
e i (kz−ωt ) (6.4)

and then factor (6.4) as follows:

E (z, t ) = Eeff

(
Ax̂+Be iδŷ

)
e i (kz−ωt ) (6.5)

where

Eeff ≡
√

|Ex |2 +
∣∣Ey

∣∣2e iφx (6.6)

A ≡ |Ex |√
|Ex |2 +

∣∣Ey
∣∣2

(6.7)

B ≡
∣∣Ey

∣∣√
|Ex |2 +

∣∣Ey
∣∣2

(6.8)

δ≡φy −φx (6.9)

Please notice that A and B are real nonnegative dimensionless numbers that
satisfy A2 +B 2 = 1. If Ey is zero, then B = 0 and everything is well-defined. On the
other hand, if Ex happens to be zero, then its phase e iφx is indeterminate. In this
case we let Eeff = |Ey |e iφy , B = 1, and δ= 0.

1E. Hecht, Optics, 3rd ed., Sect. 8.12.2 (Massachusetts: Addison-Wesley, 1998).

https://spie.org/documents/Newsroom/Imported/oemAug04/spieworld.pdf
https://spie.org/documents/Newsroom/Imported/oemAug04/spieworld.pdf
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The overall field strength Eeff is often unimportant in a discussion of polariza-
tion. It represents the strength of an effective linearly polarized field that would
correspond to the same intensity as (6.4). Specifically, from (2.62) and (6.5) we
have

I = 〈S〉t =
1

2
ncϵ0E ·E∗ = 1

2
ncϵ0 |Eeff|2 (6.10)

The phase of Eeff represents an overall phase shift that one can trivially adjust by
physically moving the light source (a laser, say) forward or backward by a fraction
of a wavelength.

Linearly polarized along x[
1
0

]
Linearly polarized along y[

0
1

]
Linearly polarized at angle α
(measured from the x-axis)[

cosα
sinα

]
Right circularly polarized

1p
2

[
1
−i

]
Left circularly polarized

1p
2

[
1
i

]

Table 6.1 Jones Vectors for several
common polarization states.

The portion of (6.5) that is relevant to our discussion of polarization is the
vector Ax̂+Be iδŷ, referred to as the Jones vector. This vector contains the essential
information regarding field polarization. Notice that the Jones vector is a kind
of unit vector, in that (Ax̂+Be iδŷ) · (Ax̂+Be iδŷ)∗ = 1. (The asterisk represents
the complex conjugate.) When writing a Jones vector we dispense with the x̂ and
ŷ notation and organize the components into a column vector (for later use in
matrix algebra) as follows: [

A
Be iδ

]
(6.11)

This vector can describe the polarization state of any plane wave field. Table 6.1
lists some Jones vectors representing various polarization states.

6.3 Elliptically Polarized Light

In general, the Jones vector (6.11) represents a polarization state between linear
and circular. This ‘between’ state is known as elliptically polarized light. As
the wave travels, the field vector makes a spiral motion. If we observe the field
vector at a point as the field goes by, the field vector traces out an ellipse oriented
perpendicular to the direction of travel (i.e. in the x–y plane). One of the axes of
the ellipse occurs at the angle

α= 1

2
tan−1

(
2AB cosδ

A2 −B 2

)
(6.12)

with respect to the x-axis (see P6.8). This angle sometimes corresponds to the
minor axis and sometimes to the major axis of the ellipse, depending on the exact
values of A, B , and δ. The other axis of the ellipse (major or minor) then occurs at
α±π/2 (see Fig. 6.3).

We can deduce whether (6.12) corresponds to the major or minor axis of the
ellipse by comparing the strength of the electric field when it spirals through the
direction specified by α and when it spirals through α±π/2. The strength of the
electric field at α is given by (see P6.8)

Eα = |Eeff|
√

A2 cos2α+B 2 sin2α+ AB cosδsin2α (Emax or Emin) (6.13)
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and the strength of the field when it spirals through the orthogonal direction
(α±π/2) is given by

Eα±π/2 = |Eeff|
√

A2 sin2α+B 2 cos2α− AB cosδsin2α (Emin or Emax) (6.14)

After computing (6.13) and (6.14), we decide which represents Emin and which
Emax according to

Emax ≥ Emin (6.15)

We could predict in advance which of (6.13) or (6.14) corresponds to the major
axis and which corresponds to the minor axis. However, making this prediction is
as complicated as simply evaluating (6.13) and (6.14) and determining which is
greater.

  

  

Figure 6.3 The electric field of el-
liptically polarized light traces an
ellipse in the plane perpendicular
to its propagation direction. The
two plots are for different values
of A, B , and δ. The angle α can de-
scribe the major axis (top) or the
minor axis (bottom), depending
on the values of these parameters.

Elliptically polarized light is often characterized by the ellipticity, given by the
ratio of the minor axis to the major axis:

e ≡ Emin

Emax

(6.16)

The ellipticity e ranges between zero (corresponding to linearly polarized light)
and one (corresponding to circularly polarized light). Finally, the helicity or
handedness of elliptically polarized light is as follows (see P6.2):

0 < δ<π → left-handed helicity (6.17)

π< δ< 2π → right-handed helicity (6.18)

6.4 Linear Polarizers and Jones Matrices

In 1928, Edwin Land invented an inexpensive polarizing device. He did it by
stretching a polymer sheet and infusing it with iodine. The stretching caused the
polymer chains to align along a common direction, whereupon the sheet was
cemented to a substrate. The infusion of iodine caused the individual chains to
become conductive, like microscopic wires.

When light impinges upon Land’s Polaroid sheet, the component of electric
field that is parallel to the polymer chains causes a current Jfree to oscillate in
that dimension. The resistance to the current quickly dissipates the energy (i.e.
the refractive index is complex) and the light is absorbed. The thickness of the
Polaroid sheet is chosen sufficiently large to ensure that virtually none of the light
with electric field component oscillating along the chains makes it through the
device.

The component of electric field that is orthogonal to the polymer chains
encounters electrons that are essentially bound to the narrow width of individual
polymer molecules. For this polarization component, the wave passes through
the material much like it does through typical dielectrics such as glass (i.e. the
refractive index is real). Today, there is a wide variety of technologies for making
polarizers, many very different from Polaroid.
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A polarizer can be represented as a 2×2 matrix that operates on Jones vec-
tors.2 The function of a polarizer is to pass only the component of electric field
that is oriented along the polarizer transmission axis. If a polarizer is oriented
with its transmission axis along the x-dimension, only the x-component of po-
larization transmits; the y-component is killed. If the polarizer is oriented with
its transmission axis along the y-dimension, only the y-component of the field
transmits, and the x-component is killed. These two scenarios can be represented
with the following Jones matrices:[

1 0
0 0

]
(polarizer with transmission along x-axis) (6.19)

[
0 0
0 1

]
(polarizer with transmission along y-axis) (6.20)

These matrices operate on any Jones vector representing the polarization of
incident light. The result gives the Jones vector for the light exiting the polarizer.

Transmitted polarization 
component

Transmission Axis 

Arbitrary incident
polarization

Figure 6.4 Light transmitting
through a Polaroid sheet. The
conducting polymer chains run
vertically in this drawing, and light
polarized along the chains is ab-
sorbed. Light polarized perpendic-
ular to the polymer chains passes
through the polarizer.

Example 6.1

Use the Jones matrix (6.19) to calculate the effect of a horizontal polarizer on
light that is initially horizontally polarized, vertically polarized, and arbitrarily
polarized.

Solution: First we consider a horizontally polarized plane wave traversing a polar-
izer with its transmission axis oriented also horizontally (x-dimension):[

1 0
0 0

][
1
0

]
=

[
1
0

]
(horizontal polarizer on horizontally polarized field)

As expected, the polarization state is unaffected by the polarizer. (We have ignored
possible attenuation from surface reflections.)

Now consider vertically polarized light traversing the same horizontal polarizer. In
this case, we have:[

1 0
0 0

][
0
1

]
=

[
0
0

]
(horizontal polarizer on vertical linear polarization)

As expected, the polarizer extinguishes the light.

Finally, when a horizontally oriented polarizer operates on light with an arbitrary
Jones vector (6.11), we have[

1 0
0 0

][
A

Be iδ

]
=

[
A
0

]
(horizontal polarizer on arbitrary polarization)

Only the horizontal component of polarization is transmitted through the polar-
izer.

2E. Hecht, Optics, 3rd ed., Sect. 8.12.3 (Massachusetts: Addison-Wesley, 1998).
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While you might readily agree that the matrices given in (6.19) and (6.20)
can be used to get the right result for light traversing a horizontal or a vertical
polarizer, you probably aren’t very impressed as of yet. In the next few sections,
we will derive Jones matrices for a number of optical elements that can modify
polarization: polarizers at arbitrary angle, wave plates at arbitrary angle, and
reflection or transmissions at an interface. Table 6.2 shows Jones matrices for
each of these devices. Before deriving these specific Jones matrices, however, we
take a moment to appreciate why the Jones matrix formulation is useful.

Linear polarizer[
cos2 θ sinθcosθ

sinθcosθ sin2 θ

]
Half-wave plate[

cos2θ sin2θ
sin2θ −cos2θ

]
Quarter-wave plate[
cos2 θ+ i sin2 θ (1− i )sinθcosθ
(1− i )sinθcosθ sin2 θ+ i cos2 θ

]
Right circular polarizer

1

2

[
1 i
−i 1

]
Left circular polarizer

1

2

[
1 −i
i 1

]
Reflection from an interface[ −rp 0

0 rs

]
Transmission through an
interface [

tp 0
0 ts

]

Table 6.2 Common Jones Matri-
ces. The angle θ is measured with
respect to the x-axis and specifies
the transmission axis of a linear
polarizer or the fast axis of a wave
plate.

The real power of the formalism becomes clear as we consider situations
where light encounters multiple polarization elements in sequence. In these situ-
ations, we use a product of Jones matrices to represent the effect of the compound
systems. We can represent this situation by[

A′

B ′
]
= Jsystem

[
A

Be iδ

]
(6.21)

where the unprimed Jones vector represents light going into the system and the
primed Jones vector represents light emerging from the system.

The matrix Jsystem is a Jones matrix formed by a series of polarization devices.
If there are N devices in the system, the compound matrix is calculated as

Jsystem ≡ JN JN−1 · · ·J2J1 (6.22)

where Jn is the matrix for the nth polarizing optical element encountered in the
system. Notice that the matrices operate on the Jones vector in the order that
the light encounters the devices. Therefore, the matrix for the first device (J1) is
written on the right, and so on until the last device encountered, which is written
on the left, farthest from the Jones vector.

When part of the light is absorbed by passing through one or more polarizers
in a system, the Jones vector of the exiting light does not necessarily remain
normalized to magnitude one (see Example 6.1). The factor by which the intensity
of the light decreases is given by

(
A′x̂+B ′ŷ

) · (A′x̂+B ′ŷ
)∗ = ∣∣A′∣∣2 + ∣∣B ′∣∣2. The

intensity exiting from the system is then

I ′ = 1

2
ncϵ0

∣∣E ′
eff

∣∣2 where
∣∣E ′

eff

∣∣2 = |Eeff|2
(∣∣A′∣∣2 + ∣∣B ′∣∣2

)
(6.23)

Here, Eeff is the original effective field before entering the system (see (6.10)), and
E ′

eff is the final effective field.
For the sake of further analysis, if desired, one can renormalize the final Jones

vector and write it in standard form as follows:[
Ã′

B̃ ′e iδ′

]
= ���e iφA′√

|A′|2 +|B ′|2
[ |A′|

|B ′|e iδ′

]
This is the Jones vector that is consistent with E ′

eff. The uninteresting overall
phase factor e iφA′ can be incorporated into E ′

eff, making Ã′ real and positive. δ′ is
the phase difference between B ′ and A′.
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6.5 Jones Matrix for a Polarizer

Transmission
Axis

Transmitted
component

Incident Light

Figure 6.5 Light transmitting
through a polarizer oriented with
transmission axis at angle θ from
x-axis.

In this section we develop a Jones matrix for describing an ideal polarizer with
its transmission axis at an arbitrary angle θ from the x-axis. We will do this in a
general context so that we can take advantage of the present work when discussing
wave plates in the next section. To help keep things on a more conceptual level,
we revert back to using electric field components directly. We will make the
connection with Jones calculus at the end.

The polarizer acts on a plane wave with arbitrary polarization. The electric
field of our plane wave may be written as

E (z, t ) = (
Ex x̂+Ey ŷ

)
e i (kz−ωt ) (6.24)

Let the transmission axis of the polarizer be specified by the unit vector ê1

and the absorption axis of the polarizer be specified by ê2 (orthogonal to the
transmission axis). The vector ê1 is oriented at an angle θ from the x-axis, as
shown in Fig. 6.6. We need to write the electric field components in terms of the
new basis specified by ê1 and ê2. By inspection of the geometry, the x-y unit
vectors are connected to the new coordinate system via:

x̂ = cosθê1 − sinθê2

ŷ = sinθê1 +cosθê2
(6.25)

Substitution of (6.25) into (6.24) yields for the electric field

E (z, t ) = (E1ê1 +E2ê2)e i (kz−ωt ) (6.26)

where
E1 ≡ Ex cosθ+Ey sinθ

E2 ≡−Ex sinθ+Ey cosθ
(6.27)

  

Figure 6.6 Electric field compo-
nents written in the ê1–ê2 basis.

Now we introduce the effect of the polarizer on the field: E1 is transmitted
unaffected, while E2 is extinguished. To account for the effect of the device, we
multiply E2 by a parameter ξ. In the case of the polarizer, ξ is zero, but when we
consider wave plates we will use other values for ξ. After traversing the polarizer,
the field becomes

Eafter (z, t ) = (E1ê1 +ξE2ê2)e i (kz−ωt ) (6.28)

We now have the field after the polarizer, but it would be nice to rewrite it in terms
of the original x–y basis. By inverting (6.25), or again by inspection of Fig. 6.6, we
see that

ê1 = cosθx̂+ sinθŷ

ê2 =−sinθx̂+cosθŷ
(6.29)

Substitution of these relationships into (6.28) together with the definitions (6.27)
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for E1 and E2 yields

Eafter (z, t ) = [(
Ex cosθ+Ey sinθ

)(
cosθx̂+ sinθŷ

)
+ξ(−Ex sinθ+Ey cosθ

)(−sinθx̂+cosθŷ
)]

e i (kz−ωt )

= [
Ex

(
cos2θ+ξsin2θ

)+Ey (sinθcosθ−ξsinθcosθ)
]

x̂e i (kz−ωt )

+ [
Ex (sinθcosθ−ξsinθcosθ)+Ey

(
sin2θ+ξcos2θ

)]
ŷe i (kz−ωt )

(6.30)
Notice that if ξ= 1 (i.e. no polarizer), then we get back exactly what we started
with (i.e. (6.30) reduces to (6.24)).

Edwin H. Land (1909–1991, American)
was born in Bridgeport, Connecticut.
He began college at Harvard University,
but dropped out to work on his idea of
making an inexpensive polarizer. He
had access to scientific literature at New
York Public Library. He gained access
to laboratory equipment by sneaking
into Columbia University after hours. In
a major breakthrough. Land invented
what later would be called polaroid film.
He resumed his studies at Harvard, but
never graduated. This was in spite of the
efforts of his wife who would extract an-
swers from him and write up his home-
work. A few years later, Land and a
financial backer formed Polaroid Corpo-
ration, which had tremendous success
and growth thanks to Land’s continued
innovations over the years, including
his development of an instant camera.
Land would often work on a problem for
days without going home or changing
his clothes. He sometimes needed to be
reminded to eat. (Wikipedia)

To get to the Jones matrix for the polarizer, we note that (6.30) is a linear mix-
ture of Ex and Ey which can be represented with matrix algebra. If we represent
the electric field as a two-dimensional column vector with its x component in the
top and its y component in the bottom (like a Jones vector), then we can rewrite
(6.30) as

Eafter (z, t ) =
[

cos2θ+ξsin2θ sinθcosθ−ξsinθcosθ
sinθcosθ−ξsinθcosθ sin2θ+ξcos2θ

][
Ex

Ey

]
e i (kz−ωt )

(6.31)

The matrix here is a properly normalized Jones matrix, even though we did not
bother factoring out Eeff to make a properly normalized Jones vector, as specified
in (6.5). We can now write down the Jones matrix for a polarizer by inserting ξ= 0
into the matrix:[

cos2θ sinθcosθ
sinθcosθ sin2θ

]
(polarizer with transmission axis at angle θ) (6.32)

Notice that when θ = 0 this matrix reduces to that of a horizontal polarizer (6.19),
and when θ =π/2, it reduces to that of a vertical polarizer (6.20).

6.6 Jones Matrix for Wave Plates

We next consider wave plates (or retarders), which are usually made from birefrin-
gent crystals. The index of refraction in the crystal depends on the orientation of
the electric field polarization. A wave plate has the appearance of a thin window
through which the light passes. The crystal is cut such that the wave plate has
a fast and a slow axis, which are 90◦ apart in the plane of the window. If the
light is polarized along the fast axis, it experiences index nfast. The orthogonal
polarization component experiences higher index nslow.

When a plane wave passes through a wave plate, the component of the electric
field oriented along the fast axis travels faster than its orthogonal counterpart,
which introduces a relative phase between the two polarization components.
As light passes through a wave plate of thickness d , the phase difference that
accumulates between the fast and the slow polarization components is

kslowd −kfastd = 2πd

λvac
(nslow −nfast) (6.33)

https://en.wikipedia.org/wiki/Edwin_H._Land
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By adjusting the thickness of the wave plate, one can introduce any desired phase
difference.

The most common types of wave plates are the quarter-wave plate and the
half wave plate. The quarter-wave plate introduces a phase difference of

kslowd −kfastd =π/2+2πm (quarter-wave plate) (6.34)

between the two polarization components, where m is an integer. This means
that the polarization component along the slow axis is delayed spatially by a
quarter wavelength (or five quarters, etc.).

The half wave plate introduces a phase difference of

kslowd −kfastd =π+2πm (half wave plate) (6.35)

where m is an integer. This means that the polarization component along the
slow axis is delayed spatially by a half wavelength (or three halves, etc.). When
m = 0 in either (6.34) or (6.35), the wave plate is said to be zero order.

Slow axis

Fast axis

Waveplate

Transmitted polarization
components have altered
relative phase

Figure 6.7 Wave plate interacting
with a plane wave.

The derivation of the Jones matrix for the two wave plates is essentially the
same as the derivation for the polarizer in the previous section. Let ê1 correspond
to the fast axis, and let ê2 correspond to the slow axis, as illustrated in Fig. 6.7. We
proceed as before. However, instead of setting ξ equal to zero in (6.31), we must
choose values for ξ appropriate for each wave plate. Since nothing is absorbed,
ξ should have a magnitude equal to one. The important feature is the phase of
ξ. As seen in (6.33), the field component along the slow axis accumulates excess
phase relative to the component along the fast axis, and we let ξ account for this.
In the case of the quarter-wave plate, the appropriate factor from (6.34) is

ξ= e iπ/2 = i (quarter-wave plate) (6.36)

This describes a relative phase delay for the light emerging with polarization
along the slow axis. Substituting (6.36) into (6.30) yields the Jones matrix for a
quarter-wave plate:[

cos2θ+ i sin2θ sinθcosθ− i sinθcosθ
sinθcosθ− i sinθcosθ sin2θ+ i cos2θ

]
(quarter-wave plate) (6.37)

For the half-wave plate, the appropriate factor applied to the slow axis is

ξ= e iπ =−1 (half-wave plate) (6.38)

and the Jones matrix becomes:[
cos2θ− sin2θ 2sinθcosθ

2sinθcosθ sin2θ−cos2θ

]
=

[
cos2θ sin2θ
sin2θ −cos2θ

]
(half-wave plate) (6.39)

Remember that θ refers to the angle that the fast axis makes with respect to the
x-axis.

Before moving on, consider the following two examples that illustrate how
wave plates are often used:
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Example 6.2

Calculate the Jones matrix for a quarter-wave plate at θ = 45◦, and determine its
effect on horizontally polarized light.

Solution: At θ = 45◦, the Jones matrix for the quarter-wave plate (6.37) reduces to

e iπ/4

p
2

[
1 −i
−i 1

]
(quarter-wave plate, fast axis at θ = 45◦ ) (6.40)

The overall phase factor e iπ/4 in front is unimportant since it can be adjusted
arbitrarily by moving the light source forwards or backwards through a fraction of
a wavelength.

Now we calculate the effect of the quarter-wave plate (oriented at θ = 45◦) operat-
ing on horizontally polarized light:

1p
2

[
1 −i
−i 1

][
1
0

]
= 1p

2

[
1
−i

]
(6.41)

The linearly polarized light becomes right-circularly polarized (see Table 6.1)

The previous example shows that a quarter-wave plate (properly oriented) can
change linearly polarized light into circularly polarized light. A quarter-wave
plate can perform the reverse operation as well. On the other hand, as seen in
the next example, a half-wave plate can rotate the polarization angle of linearly
polarized light by varying degrees while preserving the linear polarization.

Figure 6.8 Animation showing ef-
fects of polarizers and wave plates
on polarized light.

Example 6.3

Calculate the effect of a half-wave plate at an arbitrary θ on horizontally polarized
light.

Solution: Multiplying by the half-wave matrix (6.39), we obtain[
cos2θ sin2θ
sin2θ −cos2θ

][
1
0

]
=

[
cos2θ
sin2θ

]
(6.42)

The resulting Jones vector describes linearly polarized light at an angleα= 2θ from
the x-axis (see Table 6.1).

6.7 Polarization Effects of Reflection and Transmission

When light encounters a material interface, the amount of reflected and trans-
mitted light depends on the polarization. The Fresnel coefficients (3.20)–(3.23)
dictate how much of each polarization is reflected and how much is transmitted.
In addition, the Fresnel coefficients keep track of phases intrinsic in the reflec-
tion phenomenon. This is true also for reflections from multilayer coatings with
effective Fresnel coefficients (4.59), (4.60), (4.64) and (4.65).

https://vimeo.com/717105878
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To the extent that the s and p components of the field behave differently,
the overall polarization state is altered. For example, a linearly-polarized field
upon reflection can become elliptically polarized (see L 6.9). Even when a wave
reflects at normal incidence so that the s and p components are indistinguishable,
right-circular polarized light becomes left-circular polarized. This is the same
effect that causes a right-handed person to appear left-handed when viewed in a
mirror.

    

Figure 6.9 Incident, reflected and
transmitted plane waves, each
propagating along the z-axis of its
own reference frame.

We can use Jones calculus to keep track of how reflection and transmission
influences polarization. However, before proceeding, we emphasize that in this
context we do not strictly adhere to a single coordinate system as we did in
chapter 3, for example in Fig. 3.1. Instead, we consider each plane wave, whether
incident, reflected or transmitted, to propagate in the z-direction of its own frame,
regardless of the relative angles between the incident and reflected wave. This
loose manner of defining coordinate systems, depicted in Fig. 6.9, has a great
advantage. The x and y dimensions in each individual frame are aligned parallel
to their respective s and p field component. We will adopt the convention that
p-polarized light in all cases is associated with the x-dimension (horizontal, say).
The s-polarized component then lies along the y-dimension (vertical). These
conventions are different from those used in chapter 3 but will do us no harm.

We are now in a position to see why there is a handedness inversion upon
reflection from a mirror. Notice in Fig. 6.9 that for the incident light, the s-
component of the field crossed into the p-component of the field yields a vector
pointing along the beam’s propagation direction. However, for the reflected light,
the s-component crossed into the p-component points opposite to that beam’s
propagation direction.

The Jones matrix corresponding to reflection from a surface is[ −rp 0
0 rs

]
(Jones matrix for reflection) (6.43)

By convention, we place the minus sign on the coefficient rp to take care of
handedness inversion. We could put the minus sign on rs instead; the important
point is that the two polarizations acquire a relative phase differential of π when
the propagation direction flips.3

The Fresnel coefficients specify the ratios of the exiting fields to the incident
ones. When (6.43) operates on an arbitrary Jones vector such as (6.11), −rp

multiplies the horizontal component of the field, and rs multiplies the vertical
component of the field. Especially in the case of reflection from an absorbing
surface such as a metal, the phases of the two polarization components can vary
markedly (see P6.13). Thus, linearly polarized light containing both s- and p-
components in general becomes elliptically polarized when reflected from such a
surface. When light undergoes total internal reflection, again the phases of the s-

3The minus sign is needed for our specific convention of field directions, as drawn in Fig. 6.9. In
our convention, rs and rp are identical at normal incidence.
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and p-components differ markedly, which can cause linearly polarized light to
become elliptically polarized (see P6.14).

Transmission through a material interface can also influence the polarization
of the field, although typically to a lesser degree. However, there is no handedness
inversion, since the light continues on in a forward sense. The Jones matrix for
transmission is [

tp 0
0 ts

]
(Jones matrix for transmission) (6.44)

rotated
y-axis

original
x-axis

original
y-axis

rotated x-axis
(in the plane of incidence)

Figure 6.10 If the plane of inci-
dence does not coincide for suc-
cessive elements in an optical
system, a rotation matrix must be
applied to rotate the x-axis to the
plane of incidence before comput-
ing the effect of each element.

If a beam of light encounters a series of mirrors, the final polarization is
determined by multiplying the sequence of appropriate Jones matrices (6.43)
onto the initial polarization. This procedure is straightforward if the normals
to all of the mirrors lie in a single plane (say parallel to the surface of an optical
bench). However, if the beam path deviates from this plane (due to vertical
tilt on the mirrors), then we must reorient our coordinate system before each
mirror to have a new ‘horizontal’ (p-polarized dimension) and the new ‘vertical’
(s-polarized dimension). Earlier in this chapter we performed a rotation of a
coordinate system through an angle θ, described in (6.27), which is also useful
here. The rotation can be accomplished by multiplying the following matrix onto
the incident Jones vector:[

cosθ sinθ
−sinθ cosθ

]
(rotation of coordinates through an angle θ) (6.45)

This is understood as a rotation about the z-axis. The angle of rotation θ is
chosen such that the rotated x-axis lies in the plane of incidence for the mirror.
When such a reorientation of coordinates is necessary, the two orthogonal field
components in the initial coordinate system are stirred together to form the field
components in the new system. This does not change the intrinsic characteristics
of the polarization, just its representation.

Appendix 6.A Ellipsometry

Measuring the polarization of light reflected from a surface can yield information
regarding the optical properties of that surface. As done in L 6.9, it is possible
to characterize the polarization of a beam of light using a quarter-wave plate
and a polarizer. However, we often want to measure reflections at a range of
frequencies, and this would require a different quarter-wave plate thickness d
for each wavelength used (see (6.34)). Therefore, many commercial ellipsometers
do not try to extract the helicity of the light, but only the ellipticity. In this case
only polarizers are needed, which can be made to work over a wide range of
wavelengths. If, in addition, a variety of incident angles are measured, it is possible
to extract detailed information about the optical constants n and κ and the
thicknesses of possibly many layers of materials influencing the reflection.

Commercial ellipsometers4 typically employ two polarizers, one before and

4See Spectroscopic Ellipsometry Tutorial at J. A. Woollam Co.

https://www.jawoollam.com/tutorial_4.html
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one after the sample, where s- and p-polarized reflections take place. The first
polarizer ensures that linearly polarized light arrives at the test surface (polarized
at angleα to give both s- and p-components). The Jones matrix for the test surface
reflection is given by (6.43), and the Jones matrix for the analyzing polarizer
oriented at angle θ is given by (6.32). The Jones vector for the light arriving at the
detector is then[

cos2θ sinθcosθ
sinθcosθ sin2θ

][ −rp 0
0 rs

][
cosα
sinα

]
=

[ −rp cosαcos2θ+ rs sinαsinθcosθ
−rp cosαsinθcosθ+ rs sinαsin2θ

]
(6.46)

and the intensity arriving to the detector is

I ∝ ∣∣−rp cosαcos2θ+ rs sinαcosθ sinθ
∣∣2+∣∣−rp cosαcosθ sinθ+ rs sinαsin2θ

∣∣2

= ∣∣rp
∣∣2 cos2αcos2θ+|rs |2 sin2αsin2θ−

(
rp r∗

s + rsr∗
p

)
4

sin2αsin2θ

(6.47)
For ellipsometry measurements, it is customary to express the ratio of Fresnel
coefficients as

rp /rs ≡ tanΨe i∆ (6.48)

In this case, the intensity may be shown to be proportional to (see problem P6.15)

I ∝ 1−ηsin2θ+ξcos2θ (6.49)

where

η≡ 2
tanΨcos∆ tanα

tan2Ψ+ tan2α
and ξ≡ tan2Ψ− tan2α

tan2Ψ+ tan2α
(6.50)

In commercial ellipsometers, the angle θ of the analyzing polarizer often rotates at
a high speed, and the time dependence of the light reaching a detector is analyzed.
From this type of measurement, the coefficients η and ξ can be extracted with
high precision. Then equations (6.50) can be inverted (see problem P6.15) to
reveal

tanΨ=
√

1+ξ
1−ξ |tanα| and cos∆= η√

1−ξ2
sign(α) (6.51)

From a series of these types of measurements, it is possible to extract the values
of n and κ for materials from the expressions for rs and rp (with the aid of a
computer!). With a sufficiently large number of unique measurements, it is
possible even to characterize multilayer coatings involving layers with varying
thicknesses and indices.

Appendix 6.B Partially Polarized Light

We outline here an approach for dealing with partially polarized light, which is a
mixture of polarized and unpolarized light. Most natural light such as sunshine is
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unpolarized. The transverse electric field direction in natural light varies rapidly
(and quasi randomly). Such variations imply the superposition of multiple fre-
quencies as opposed to the single frequency assumed in the formulation of Jones
calculus earlier in this chapter. Unpolarized light can become partially polarized
when it, for example, reflects from a surface at oblique incidence, since s and p
components of the polarization might reflect with differing strength.

Sir George Gabriel Stokes (1819–
1903, Irish) was born in Skreen, Ireland.
He entered Cambridge University at
age 18 and graduated four years later
with the distinction of senior wrangler.
In 1849, he became a professor of
mathematics at Cambridge where he
later worked with James Clerk Maxwell
and Lord Kelvin to form the Cambridge
School of Mathematical Physics. Stokes
was a powerful mathematician as well
as a good experimentalist, often testing
his theoretical solutions in the laboratory.
In addition to his contributions to optics,
Stokes made important contributions to
fluid dynamics (e.g. the Navier-Stokes
equations) and to mathematical physics;
Stokes’ theorem is employed several
places in this in this book.(Wikipedia)

Stokes vectors are used to keep track of the partial polarization (and atten-
uation) of a light beam as the light progresses through an optical system.5 In
contrast, Jones vectors are designed for pure polarization states. We can consider
any light beam as an intensity sum of completely unpolarized light and perfectly
polarized light:

I = Ipol + Iun (6.52)

It is assumed that both types of light propagate in the same direction.
The main characteristic of unpolarized light is that it cannot be extinguished

by a single polarizer (even in combination with a wave plate). Moreover, the
transmission of unpolarized light through an ideal polarizer is always 50%. On the
other hand, polarized light (be it linearly, circularly, or elliptically polarized) can
always be represented by a Jones vector, and it is always possible to extinguish it
using a quarter-wave plate and a single polarizer.

We may introduce the degree of polarization as the fraction of the intensity
that is in a definite polarization state:

ξpol ≡ Ipol

Ipol + Iun

(6.53)

The degree of polarization takes on values between zero and one. Thus, if the light
is completely unpolarized (such that Ipol = 0), the degree of polarization is zero,
and if the beam is fully polarized (such that Iun = 0), the degree of polarization is
one.

A Stokes vector, which characterizes a partially polarized beam, is written as
S0

S1

S2

S3


The parameter

S0 ≡ I

Iin

= Ipol + Iun

Iin

(6.54)

is a comparison of the beam’s intensity (or power) to a benchmark or ‘input’
intensity, Iin, measured before the beam enters the optical system under consid-
eration. I represents the intensity at the point of investigation, where one wishes
to characterize the beam. Thus, the value S0 = 1 represents the input intensity,

5E. Hecht, Optics, 3rd ed., Sect. 8.12.1 (Massachusetts: Addison-Wesley, 1998).

https://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet
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and S0 can drop to values less than one, to account for attenuation of light by
polarizers in the system. (S0 could increase in the atypical case of amplification.)

The next parameter, S1, describes how much the light looks either horizontally
or vertically polarized, and it is defined as

S1 ≡ 2Ihor

Iin

−S0 (6.55)

Here, Ihor represents the amount of light detected if an ideal linear polarizer is
placed with its axis aligned horizontally directly in front of the detector (inserted
where the light is characterized). S1 ranges between negative one and one, taking
on its extremes when the light is linearly polarized either horizontally or vertically,
respectively. If the light has been attenuated, it may still be perfectly horizontally
polarized even if S1 has a magnitude less than one. (Alternatively, one might
examine S1/S0, which is guaranteed to range between negative one and one.)

The parameter S2 describes how much the light looks linearly polarized along
the diagonals. It is given by

S2 ≡ 2I45◦

Iin

−S0 (6.56)

Similar to the previous case, I45◦ represents the amount of light detected if an
ideal linear polarizer is placed with its axis at 45◦ directly in front of the detector
(inserted where the light is characterized). As before, S2 ranges between negative
one and one, taking on extremes when the light is linearly polarized either at 45◦

or 135◦.
Finally, S3 characterizes the extent to which the beam is either right or left

circularly polarized:

S3 ≡ 2Ir-cir

Iin

−S0 (6.57)

Here, Ir-cir represents the amount of light detected if an ideal right-circular po-
larizer is placed directly in front of the detector. A right-circular polarizer is
one that passes right-handed polarized light, but blocks left handed polarized
light. One way to construct such a polarizer is a quarter-wave plate, followed
by a linear polarizer with the transmission axis aligned 45◦ from the wave-plate
fast axis, followed by another quarter-wave plate at −45◦ from the polarizer (see
P6.12).6 Again, this parameter ranges between negative one and one, taking on
the extremes for right and left circular polarization, respectively.

Importantly, if any of the parameters S1, S2, or S3 take on their extreme values
(i.e. a magnitude equal to S0), the other two parameters necessarily equal zero.
As an example, if a beam is linearly polarized in the horizontal direction with
I = Iin, then we have Ihor = Iin, I45◦ = Iin/2, and Ir-cir = Iin/2. This yields S0 = 1,
S1 = 1, S2 = 0, and S3 = 0. As a second example, suppose that the light has
been attenuated to I = Iin/3 but is purely left circularly polarized. Then we have

6The final quarter-wave plate is to put the light back into the original circular state – not needed
to measure the Stokes parameter.
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Ihor = Iin/6, I45◦ = Iin/6, and Ir-cir = 0. Whereas the Stokes parameters are S0 = 1/3,
S1 = 0, S2 = 0, and S3 =−1/3.

Another interesting case is completely unpolarized light, which transmits 50%
through all of the polarizers discussed above. In this case, Ihor = I45◦ = Ir-cir = I /2
and S1 = S2 = S3 = 0.

Example 6.4

Find the Stokes parameters for perfectly polarized light, represented by an arbitrary
Jones vector

[
A
B

]
where A and B are complex.7 Depending on the values A and B ,

the polarization can follow any ellipse.

Solution: The input intensity of this polarized beam is I in = Ipol = |A|2 +|B |2, ac-
cording to Eq. (6.23), where we absorb the factor 1

2ϵ0c |Eeff|2 into |A|2 and |B |2
for convenience. The Jones vector for the light that passes through a horizontal
polarizer is [

1 0
0 0

][
A
B

]
=

[
A
0

]
which gives a measured intensity of Ihor = |A|2. Similarly, the Jones vector when
the beam is passed through a polarizer oriented at 45◦ is

1

2

[
1 1
1 1

][
A
B

]
= A+B

2

[
1
1

]
leading to an intensity of

I45◦ =
|A+B |2

2
= |A|2 +|B |2 + A∗B + AB∗

2

Finally, the Jones vector for light passing through a right-circular polarizer (see
P6.12) is

1

2

[
1 i
−i 1

][
A
B

]
= A+ i B

2

[
1
−i

]
giving an intensity of

Ir-cir =
|A+ i B |2

2
= |A|2 +|B |2 + i (A∗B − AB∗)

2

Thus, the Stokes parameters become

S0 =
|A|2 +|B |2

I in

= 1

S1 = 2|A|2
I in

− |A|2 +|B |2
I in

= |A|2 −|B |2
I in

S2 = |A|2 +|B |2 + A∗B + AB∗

I in

− |A|2 +|B |2
I in

= A∗B + AB∗

I in

S3 = |A|2 +|B |2 + i (A∗B − AB∗)

I in

− |A|2 +|B |2
I in

= i
(A∗B − AB∗)

I in

7We will find it easier in this appendix to write

[
A
B

]
instead of

[ |A|
|B |eiδ

]
, where δ is the phase

difference between B and A.
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Note that the unpolarized portion of the light does not contribute to S1, S2,
or S3. Half of the unpolarized light survives any of the test filters, which cancels

neatly with the unpolarized portion of S0 = Ipol+Iun

Iin
in Eqs. (6.55)–(6.57).

With the aid of the results in Example 6.4, a completely general form of the
Stokes vector may then be written as

S0

S1

S2

S3

= 1

Iin


Ipol + Iun

|A|2 −|B |2
A∗B + AB∗

i (A∗B − AB∗)

 (6.58)

where the Jones vector for the polarized portion of the light is[
A
B

]
and the intensity of the polarized portion of the light is

Ipol = |A|2 +|B |2 (6.59)

Again, we have hidden the factor 1
2ϵ0c |Eeff|2 for the polarized portion of the light

inside |A|2 and |B |2.
We would like to express the degree of polarization in terms of the Stokes

parameters. We first note that the quantity
√

S2
1 +S2

2 +S2
3 can be expressed as

√
S2

1 +S2
2 +S2

3 =
√( |A|2 −|B |2

Iin

)2

+
(

(A∗B + AB∗)

Iin

)2

+
(

i (A∗B − AB∗)

Iin

)2

= |A|2 +|B |2
Iin

= Ipol

Iin

(6.60)

Substituting (6.54) and (6.60) into the expression for the degree of polarization
(6.53) yields

ξpol ≡ 1

S0

√
S2

1 +S2
2 +S2

3 (6.61)

If the light is polarized such that it perfectly transmits through or is perfectly
extinguished by one of the three test polarizers associated with S1, S2, or S3, then
the degree of polarization will be unity. Obviously, it is possible to have pure
polarization states that are not aligned with the axes of any one of these test
polarizers. In this situation, the degree of polarization is still one, although the
values S1, S2, and S3 may all three contribute to (6.61).

Hans Mueller (1900-1965, Swiss) was
a shepherd until his late teens. As a
physics professor at MIT, he built on the
work of Stokes and in 1943 formulated a
matrix method for manipulating Stokes
vectors. He was an engaging lecturer
into the 1950s and was known for his ex-
citing demonstrations. He was a student
of Arnold Sommerfeld, and did seminal
work on ferroelectricity (he is reported
to have coined the term). See Laszlo
Tisza,“Adventures of a Theoretical Physi-
cist, Part II: America,” Phys. Perspect.
11, 120-168 (2009).

Finally, it is possible to represent polarizing devices as matrices that operate
on the Stokes vectors in much the same way that Jones matrices operate on
Jones vectors. Since Stokes vectors are four-dimensional, the matrices used are
four-by-four. These are known as Mueller matrices.8

8E. Hecht, Optics, 3rd ed., Sect. 8.12.3 (Massachusetts: Addison-Wesley, 1998).
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Derivation: Mueller Matrix for a Linear Polarizer

We know that 50% of the unpolarized light transmits through a polarizer, ending
up as polarized light with Jones vector[

A′
1

B ′
1

]
=

√
Iun

2

[
cosθ
sinθ

]
(see table 6.1). As usual, let θ give the angle of the transmission axis relative to the
horizontal. The Jones matrix (6.23) acts on the polarized portion of the light as
follows[

A′
2

B ′
2

]
=

[
cos2θ cosθ sinθ

cosθ sinθ sin2θ

][
A
B

]
= [A cosθ+B sinθ]

[
cosθ
sinθ

]

One might be tempted to add
[

A′
1

B ′
1

]
and

[
A′

2
B ′

2

]
, but this would be wrong, since

the two beams are not coherent. As mentioned previously, unpolarized light
necessarily contains multiple frequencies, and so the fields from the polarized and
unpolarized beams destructively interfere as often as they constructively interfere.
In this case, we simply add intensities rather than fields. That is, we have

∣∣A′∣∣2 = ∣∣A′
1

∣∣2 + ∣∣A′
2

∣∣2 =
[

Iun

2
+|A cosθ+B sinθ|2

]
cos2θ

=
[

Iun

2
+|A|2 cos2θ+|B |2 sin2θ+ (

A∗B + AB∗)
sinθcosθ

]
cos2θ

= I in

[
S0

2
+ cos2θ

2
S1 + sin2θ

2
S2

]
cos2θ

Similarly,

∣∣B ′∣∣2 = ∣∣B ′
1

∣∣2 + ∣∣B ′
2

∣∣2 = I in

[
S0

2
+ cos2θ

2
S1 + sin2θ

2
S2

]
sin2θ

Since the light has gone through a linear polarizer, we are guaranteed that A′ and
B ′ have the same phase. Therefore, A′∗B ′ = A′B ′∗ = |A′||B ′|. In view of (6.58), these
results lead to

S′
0 =

∣∣A′∣∣2 + ∣∣B ′∣∣2

I in

= S0

2
+ cos2θ

2
S1 + sin2θ

2
S2

S′
1 =

∣∣A′∣∣2 − ∣∣B ′∣∣2

I in

=
[

S0

2
+ cos2θ

2
S1 + sin2θ

2
S2

](
cos2θ− sin2θ

)
= cos2θ

2
S0 + cos2 2θ

2
S1 + sin4θ

4
S2

S′
2 =

∣∣A′∣∣ ∣∣B ′∣∣+ ∣∣A′∣∣ ∣∣B ′∣∣
I in

= 2

[
S0

2
+ cos2θ

2
S1 + sin2θ

2
S2

]
cosθ sinθ

= sin2θ

2
S0 + sin4θ

4
S1 + sin2 2θ

2
S2

S′
3 = i

∣∣A′∣∣ ∣∣B ′∣∣− ∣∣A′∣∣ ∣∣B ′∣∣
I in

= 0
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These transformations expressed in matrix format become
S′

0
S′

1
S′

2
S′

3

= 1

2


1 cos2θ sin2θ 0

cos2θ cos2 2θ 1
2 sin4θ 0

sin2θ 1
2 sin4θ sin2 2θ 0

0 0 0 0




S0

S1

S2

S3


which reveals the Mueller matrix for a linear polarizer.

The Mueller matrix for a half-wave plate is worked out below. The Mueller
matrix for a quarter-wave plate is deferred to problem P6.16

Derivation: Mueller Matrix for a Half-Wave Plate

We know that all of the light transmits through the wave plate. This immediately
gives

S′
0 = S0

The wave plate does nothing to unpolarized light. On the other hand, the polarized
portion of the light is influenced by the wave plate as follows (see (6.39)):[

A′
B ′

]
=

[
cos2θ sin2θ
sin2θ −cos2θ

][
A
B

]
=

[
A cos2θ+B sin2θ
A sin2θ−B cos2θ

]

As usual, θ is the angle of the fast axis relative to the horizontal. (As expected,∣∣A′∣∣2+∣∣B ′∣∣2 = |A|2+|B |2; the intensity of the light is unaltered.) Using (6.58) we get

S′
1 =

∣∣A′∣∣2 − ∣∣B ′∣∣2

I in

= |A cos2θ+B sin2θ|2 −|A sin2θ−B cos2θ|2
Ii n

=
(|A|2 −|B |2)cos4θ+ (A∗B + AB∗)sin4θ

Ii n
= S1 cos4θ+S2 sin4θ

S′
2 =

A′∗B ′+ A′B ′∗

Ii n

= (A∗ cos2θ+B∗ sin2θ) (A sin2θ−B cosθ)

Ii n

+ (A cos2θ+B sin2θ) (A∗ sin2θ−B∗ cosθ)

Ii n

= |A|2 −|B |2
Ii n

sin4θ− AB∗+ A∗B

Ii n
cos4θ = S1 sin4θ−S2 cos4θ

S′
3 = i

A′∗B ′− A′B ′∗

Ii n

= i
(A∗ cos2θ+B∗ sin2θ) (A sin2θ−B cosθ)

Ii n

− i
(A cos2θ+B sin2θ) (A∗ sin2θ−B∗ cosθ)

Ii n

=−i
A∗B − AB∗

Ii n
=−S3
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These transformations expressed in matrix format become
S′

0
S′

1
S′

2
S′

3

=


1 0 0 0
0 cos4θ sin4θ 0
0 sin4θ −cos4θ 0
0 0 0 −1




S0

S1

S2

S3


which reveals the Mueller matrix for a half-wave plate.
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Exercises

Exercises for 6.2 Jones Vectors for Representing Polarization

P6.1 Show that
(

Ax̂+Be iδŷ
) · (Ax̂+Be iδŷ

)∗ = 1, as defined in connection
with (6.5).

P6.2 Prove that if 0 < δ<π, the helicity is left-handed, and if π< δ< 2π the
helicity is right-handed.

HINT: Write the relevant real field associated with (6.5)

E (z, t ) = |Eeff|
[
x̂A cos

(
kz −ωt +φ)+ ŷB cos

(
kz −ωt +φ+δ)]

where φ is the phase of Eeff. Freeze time at, say, t = φ/ω. Determine
the field, for example, at z = 0 and at z = λ/4 (a quarter cycle down-
stream). If E (0, t )×E (λ/4, t ) points in the direction of k, then the helic-
ity matches that of a common wood screw.

L6.3 Determine how much right-handed circularly polarized light (λvac =
633 nm) is delayed (or advanced if φ is negative) with respect to left-
handed circularly polarized light as it goes through approximately 3 cm
of Karo syrup (the neck of the bottle). This phenomenon is called
optical activity. Because of a definite-handedness to the molecules in
the syrup, right- and left-handed polarized light experience slightly
different refractive indices. (video)

Screen

Laser

Polarizer

Karo Light
Corn Syrup

Polarizer

Figure 6.11 Lab schematic for L 6.3.

HINT: Linearly polarized light contains equal amounts of right and left
circularly polarized light. Consider

1

2

[
1
i

]
+ e iφ

2

[
1
−i

]
where φ is the phase delay of the right circular polarization. Show that
this can be written as

e iδ
[

cosφ/2
sinφ/2

]

https://vimeo.com/717097214
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The overall phase δ is unimportant. Compare this with[
cosα
sinα

]
where α is the angle of linearly polarized light (see table 6.1).

Exercises for 6.3 Elliptically Polarized Light

P6.4 Consider the Jones vector [
A

Be iδ

]
For the following cases, what is the orientation of the major axis, and
what is the ellipticity of the light? Case I: A = B = 1/

p
2; δ= 0 Case II:

A = B = 1/
p

2; δ=π/2; Case III: A = B = 1/
p

2; δ=π/4.

Exercises for 6.4 Linear Polarizers and Jones Matrices

P6.5 (a) Suppose that linearly polarized light is oriented at an angle α with
respect to the horizontal or x-axis (see table 6.1). What fraction of the
original intensity gets through a vertically oriented polarizer?

(b) If the original light is right-circularly polarized, what fraction of the
original intensity gets through the same polarizer?

Exercises for 6.5 Jones Matrix for a Polarizer

P6.6 Horizontally polarized light (α= 0) is sent through two polarizers, the
first oriented at θ1 = 45◦ and the second at θ2 = 90◦.

(a) What fraction of the original intensity emerges?

(b) What is the fraction if the ordering of the polarizers is reversed?

P6.7 (a) Suppose that linearly polarized light is oriented at an angle α with
respect to the horizontal or x-axis. What fraction of the original inten-
sity emerges from a polarizer oriented with its transmission at angle θ
from the x-axis?
Answer: cos2 (θ−α); compare with P6.5.

(b) If the original light is right circularly polarized, what fraction of the
original intensity emerges from the same polarizer?

P6.8 Derive (6.12), (6.13), and (6.14).

HINT: Analyze the Jones vector as you would analyze light in the lab-
oratory. Put a polarizer in the beam and compute the intensity as a
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function of polarizer angle via (6.23). Then find the polarizer angle (call
itα) that gives a maximum (or a minimum) of intensity. The angle then
corresponds to an axis of the ellipse inscribing the E-field as it spirals.
When taking the arctangent, remember that it is defined only over half
of the unit circle. You can add π to the output of arctangent for another
valid result, which gives a second ellipse axis.

Exercises for 6.6 Jones Matrix for Wave Plates

L6.9 Create a source of unknown elliptical polarization by reflecting a lin-
early polarized laser beam (with both s and p-components) from a
metal mirror with a large incident angle (i.e. θi ≥ 80◦). Use a quarter-
wave plate and a polarizer to determine the Jones vector of the reflected
beam. Find the ellipticity, the helicity (right or left handed), and the
orientation of the major axis. (video)

Figure 6.12 Lab schematic for L 6.9.

HINT: A polarizer alone can reveal the direction of the major and minor
axes and the ellipticity, but it does not reveal the helicity. Use a quarter-
wave plate (oriented at a special angle θ) to convert the unknown
elliptically polarized light into linearly polarized light. A subsequent
polarizer can then extinguish the light, from which you can determine
the Jones vector of the light coming through the wave plate. This must
equal the original (unknown) Jones vector (6.11) operated on by the
wave plate (6.37). As you solve the matrix equation, it is helpful to note
that the inverse of (6.37) is its own complex conjugate.

P6.10 What is the minimum thickness (called zero-order thickness) of a
quartz plate made to operate as a quarter-wave plate forλvac = 500 nm?
The indices of refraction are nfast = 1.54424 and nslow = 1.55335.

Figure 6.13 Arrangement for
P6.11.

P6.11 Light that is linearly polarized along α= 30◦ traverses a quarter-wave
plate with fast axis at θ1 = 60◦. The light then goes through a polarizer
with transmission axis at θ2 = 90◦ followed by a half-wave plate with
fast axis at θ3 = 30◦.

(a) What is the Jones vector of the light emerging from the final element?

https://vimeo.com/717097175
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(b) What fraction of the original intensity transmits through the system?

P6.12 A right-circular polarizer can be constructed using a quarter-wave plate
with fast axis at 45◦, followed by a linear polarizer oriented vertically,
and finally a quarter-wave plate with fast axis at −45◦.

(a) Calculate the Jones matrix for this system.

Answer: 1
2

[
1 i
−i 1

]
(b) Check that the device leaves right-circularly polarized light unal-
tered while killing left-circularly polarized light.

Exercises for 6.7 Polarization Effects of Reflection and Transmission

p

s

80

Figure 6.14 Geometry for P6.13.

P6.13 Light is linearly polarized at α= 45◦ with a Jones vector according to
table 6.1. The light is reflected from a vertical silver mirror with angle
of incidence θi = 80◦, as described in P3.13. Find the Jones vector
representation for the polarization of the reflected light.

NOTE: The answer may be somewhat different than the result mea-
sured in L 6.9. For one thing, we have not considered that a silver mirror
inevitably has a thin oxide layer or, more often, a special protective
coating applied.

P6.14 Calculate the angle θ to cut the glass in a Fresnel rhomb such that after
the two internal reflections there is a phase difference of π/2 between
the two polarization states. The rhomb then acts as a quarter-wave
plate.

Fresnel 
Rhomb

Side 
View

Figure 6.15 Fresnel Rhomb geom-
etry for P6.14.

HINT: You need to find the phase difference between (3.42) and (3.43).
Set the difference equal to π/4 for each bounce. The equation you get
does not have a clean analytic solution, but you can plot it to find a
numerical solution.
Answer: There are two angles that work: θ ∼= 50◦ and θ ∼= 53◦.

Exercises for 6.A Ellipsometry

P6.15 Derive (6.49) and (6.51), often used for ellipsometry measurements.

HINT: Using sin2θ = 1−cos2θ
2 and cos2θ = 1+cos2θ

2 , first show

I ∝ 1−
rp r ∗

s +rs r ∗
p

|rs |2 tanα

|rp |2
|rs |2 + tan2α

sin2θ+
|rp |2
|rs |2 − tan2α

|rp |2
|rs |2 + tan2α

cos2θ
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Exercises for 6.B Partially Polarized Light

P6.16 Derive the Mueller matrix for a quarter-wave plate.
Answer: 

1 0 0 0
0 cos2 2θ 1

2 sin4θ −sin2θ
0 1

2 sin4θ sin2 2θ cos2θ
0 sin2θ −cos2θ 0





Chapter 7

Superposition of Quasi-Parallel
Plane Waves

In previous chapters, we considered only individual plane-wave fields which
have uniform intensity throughout space and time. Some optical fields can be
well-approximated by a plane wave, but most have a more complicated structure.
It turns out that any field (e.g. pulses or a focused beam), regardless of how
complicated, can be described by a superposition of many plane wave fields. In
this chapter, we develop the techniques for superimposing plane waves.

We begin our analysis with a discrete sum of plane wave fields and show how
to calculate the intensity in this case. We will introduce the concept of group
velocity, which describes the motion of interference ‘fringes’ or ‘packets’ resulting
when multiple plane waves are superimposed. Group velocity is distinct from
phase velocity that we encountered previously. As we saw in chapter 2, the real
part of refractive index in certain situations can be less than one, indicating
superluminal wave crest propagation (i.e. greater than c)! However, it is the group
velocity that tracks the speed of interference fringes, which are associated with
light intensity.

In section 7.3, we extend our analysis of wave superposition to a continuum
of plane waves. The analysis is based on Fourier theory, which is a tool for keeping
track of the plane waves that make up a given waveform E (r, t ). We will learn how
to decompose arbitrary waveforms into plane wave components, which we know
how to propagate in a material (with a frequency-dependent index). Conversely,
we will also learn how to reassemble plane waves into a final pulse at the end of
propagation.

Different frequency components of a waveform experience different phase
velocities, causing the waveform to undergo distortion as it propagates, a phe-
nomenon called dispersion. Narrowband packets (i.e. packets comprised of a
narrow range of frequencies and hence long duration) tend to maintain their
shape (with some spreading) while propagating at the group velocity. On the
other hand, broadband pulses (i.e. packets comprised of a wide range of frequen-
cies and possibly of short duration) tend to distort severely while propagating in

169
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materials.
It turns out that group velocity can also become superluminal when signif-

icant absorption and/or amplification of the light pulse is involved. This is no
cause for alarm (nor is it cause for an abundance of gee-whiz papers on the
subject). Absorption and amplification can cause a pulse to appear to move
unexpectedly fast through a reshaping effect. Group velocity, or rather its inverse
group delay, takes this reshaping into account. For example, energy can be lost
from the back of a pulse or perhaps added to an already-present forward portion
of a pulse such that the average pulse position appears to advance superluminally.
When all energy is accounted for (both the energy in the medium and in the light
pulse), however, no information advances faster than the universal speed limit c.
Appendix 7.B provides analysis of how a medium exchanges energy with a pulse
to produce these eye-catching effects.

7.1 Intensity of Superimposed Plane Waves

We can construct arbitrary waveforms by adding together many plane waves with
different propagation directions, amplitudes, phases, frequencies and polariza-
tions. Consider the following discrete sum of plane waves:

E(r, t ) =∑
j

E j e i(k j ·r−ω j t) (7.1)

The corresponding magnetic field according to (2.56) is

B(r, t ) =∑
j

B j e i(k j ·r−ω j t) =∑
j

k j ×E j

ω j
e i(k j ·r−ω j t) (7.2)

As usual, the (time- and space-independent) individual field components E j

contain both amplitude and phase information for each plane wave.
The Poynting vector (2.52) associated with the fields (7.1) and (7.2) is

S(r, t ) = Re{E (r, t )}× Re{B (r, t )}

µ0

= ∑
j ,m

1

ωmµ0

Re
{

E j e i(k j ·r−ω j t)
}
×Re

{
km ×Eme i (km ·r−ωm t )

} (7.3)

(Recall the conspiracy that only the real parts of the fields are relevant – crucial
before multiplying.) The above expression is cumbersome because of the many
cross terms that arise when the two summations are multiplied. We need some
simplifying assumptions before we can make any real progress on this expression.
For example, we can time-average the Poynting vector to remove fluctuations that
vary on the scale of optical frequencies. Additionally, it is common to encounter
the situation where all plane-wave components travel roughly parallel to each
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other, which will be a big help in simplifying (7.3). Let us further assume that the
km vectors are real.1

Intensity for Quasi Parallel-traveling Light

We apply the BAC-CAB rule (P0.3) to (7.3) and obtain

S(r, t ) = ∑
j ,m

1

ωmµ0

[
km

(
Re

{
E j e i

(
k j ·r−ω j t

)}
·Re

{
Eme i (km ·r−ωm t )

})
− Re

{
Eme i (km ·r−ωm t )

}(
Re

{
E j e i

(
k j ·r−ω j t

)}
·km

)] (7.4)

The last term in (7.4) can be dismissed if all k-vectors are approximately parallel to
each other, in which case all of the km are essentially perpendicular to each of the
E j . We will make this rather stringent assumption and kill the last line in (7.4). The
magnitude of the Poynting vector then becomes (with the help of (0.30))

S(r, t ) =∑
j ,m

km

ωmµ0

E j e i
(
k j ·r−ω j t

)
+E∗

j e−i
(
k j ·r−ω j t

)
2


·
{

Eme i (km ·r−ωm t ) +E∗
me−i (km ·r−ωm t )

2

}

= ∑
j ,m

km

4ωmµ0

{
E j ·Eme i

[(
k j +km

)·r−(
ω j +ωm

)
t
]
+E∗

j ·E∗
me−i

[(
k j +km

)·r−(
ω j +ωm

)
t
]

+ E j ·E∗
me i

[(
k j −km

)·r−(
ω j −ωm

)
t
]
+E∗

j ·Eme−i
[(

k j −km
)·r−(

ω j −ωm
)
t
]}

(parallel k-vectors)

(7.5)
The terms involving (ω j +ωm)t oscillate rapidly and time-average to zero. By
comparison, the terms involving (ω j −ωm)t oscillate slowly (especially when the
ω j are all in the neighborhood of the ωm) or not at all when j = m. We retain the
slower fluctuations and discard the rapid oscillations. For purposes of computing
the intensity we can approximate the index as approximately constant, and write
km/(ωmµ0) ≈ nϵ0c. With these simplifications, (7.5) becomes

〈S(r, t )〉osc =
nϵ0c

2

∑
j ,m

E j ·E∗
me i

[(
k j −km

)·r−(
ω j −ωm

)
t
]
+E∗

j ·Eme−i
[(

k j −km
)·r−(ωn−ωm )t

]
2

= nϵ0c

2
Re

{∑
j

E j e i
(
k j ·r−ω j t

)
·∑

m
E∗

me−i (km ·r−ωm t )

}
= nϵ0c

2
Re

{
E (r, t ) ·E∗(r, t )

}
.

(parallel k-vectors) (7.6)

The final expression in (7.6) is already manifestly real so there is no need to
apply the operation Re{ }. The time-averaged intensity for light composed of

1If the wave vectors are complex, the result is essentially the same, but, as in (2.62), the field
amplitudes E j correspond to local amplitudes (adjusted for absorption or amplification during
prior propagation).
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parallel wave vectors is then well-approximated by

I (r, t ) = nϵ0c

2
E(r, t ) ·E∗ (r, t )(valid for parallel or antiparallel

k-vectors and approximately
constant n)

(7.7)

In a surprising turn of events, it is important that E(r, t ) in (7.7) be written as the
entire complex expression for the electric field rather than just the real part. Then
(7.7) automatically time-averages over rapid oscillations in such a way that I (r, t )
retains a slowly varying time dependence. This expression is reminiscent of (2.62),
but it should be kept in mind that we previously considered only a single plane
wave (perhaps with two distinct polarization components).

If some of the k-vectors point in an anti-parallel direction, we can still use (7.7).
This brings up a distinction between irradiance S and intensity I . For example,
〈S〉 is zero for standing waves because there is no net flow of energy, whereas
(7.7) still gives a result. Intensity specifies whether atoms locally experience an
oscillating electric field without regard for whether there is a net flow of energy
carried by a light field.2

We can relax the restriction of parallel k j ’s slightly and apply (7.7) also to plane
waves with nearly parallel k j ’s. Such a situation occurs, for example, in a Young’s
two-slit diffraction experiment (studied in chapter 8).

7.2 Group vs. Phase Velocity: Sum of Two Plane Waves

Figure 7.1 Animation showing su-
perposition of two plane waves
(electric fields) with different fre-
quencies and traveling at different
speeds.

To begin our study of interference, consider just two plane waves with equal
amplitudes given by

E1 = E0e i (k1·r−ω1t ) and E2 = E0e i (k2·r−ω2t ) (7.8)

As we previously studied (see P1.9), the velocities of the wave crests for these two
waves are

vp1 =ω1/k1 and vp2 =ω2/k2 (7.9)

These are known as the phase velocities of the individual plane waves.
Next consider a composite wave created from the superposition of the above

two plane waves:
E(r, t ) = E0e i (k1·r−ω1t ) +E0e i (k2·r−ω2t ) (7.10)

The two plane waves interfere, producing regions of higher and lower intensity
that move in time. Remarkably, these intensity peaks can propagate at speeds
quite different from either of the phase velocities in (7.9). The intensity (7.7) for

2At extreme intensities, when the influence of the magnetic field becomes comparable to that of
the electric field, the distinction between propagating and standing fields becomes important to
the behavior of charged particles in that field.

https://vimeo.com/717105857
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the field (7.10) is computed as follows:

I (r, t ) = nϵ0c

2
E0 ·E∗

0

[
e i (k1·r−ω1t ) +e i (k2·r−ω2t )

][
e−i (k1·r−ω1t ) +e−i (k2·r−ω2t )

]
= nϵ0c

2
E0 ·E∗

0

[
2+e i [(k2−k1)·r−(ω2−ω1)t ] +e−i [(k2−k1)·r−(ω2−ω1)t ]

]
= nϵ0cE0 ·E∗

0 [1+cos[(k2 −k1) · r− (ω2 −ω1) t ]]

= nϵ0cE0 ·E∗
0 [1+cos(∆k · r−∆ωt )]

(7.11)

where
∆k ≡ k2 −k1

∆ω≡ω2 −ω1
(7.12)

In
te
n
si
ty

Position

Figure 7.2 Intensity of two inter-
fering plane waves. The solid line
shows intensity averaged over
rapid oscillations.

The darker line in Fig. 7.2 shows the intensity computed with (7.11). Keep in
mind that this intensity is averaged over rapid oscillations. For comparison, the
lighter line shows the Poynting flux with the rapid oscillations retained, according
to (7.5). It is left as an exercise (see P7.3) to show that the rapid-oscillation peaks
in Fig. 7.2 move with a phase velocity derived from the average k and average ω of
the two plane waves:

vp ≡ ω̄

k̄
(7.13)

An examination of the cosine argument in (7.11) reveals that the time-averaged
curve in Fig. 7.2 (dark) travels with speed

vg ≡ ∆ω

∆k
∼= dω

dk

∣∣∣∣
ω̄

(7.14)

This is known as the group velocity. Essentially, vg may be thought of as the
velocity for the envelope that encloses the rapid oscillations. As noted, the group
velocity is often written as a derivative rather than a ratio of finite differences; the
derivative will be more natural when dealing with a continuum of plane waves
rather than a pair of planes.

John William Strutt (3rd Baron
Rayleigh) (1842–1919, British) was
born in Langford Grove, Essex, England
and was frequently ill in his youth. He
entered the University of Cambridge
in 1861 and graduated four years later
as senior wrangler in mathematics. He
married in 1871 and became the father
of three sons. In 1873, Strutt inherited
the Barony of Rayleigh (and the title
Lord Rayleigh) from his father who died
that year. In 1879 Strutt succeeded
James Clerk Maxwell as the Cavendish
Professor of Physics at Cambridge.
Rayleigh studied a wide variety of sub-
jects. He is credited with the discovery
of argon. He studied how atoms scatter
light (Rayleigh scattering) and explained
why the sky is blue. He extensively de-
veloped the notion of group velocity and
used it to understand the propagation
of sound. He won the Nobel prize in
physics in 1904 for investigations of
gas densities and for discovering argon.
(Wikipedia)

In general, vg and vp are not the same. This means that as the waveform
propagates, the rapid oscillations move within the larger modulation pattern, for
example, continually disappearing at the front and reappearing at the back of
each modulation. The group velocity is identified with the propagation of overall
waveforms. The presence of intensity in a waveform is clearly tied more to vg

than to vp .

Example 7.1

Determine the phase velocity and group velocity for the superposition of two plane
waves in a plasma (see P2.7).

Solution: The index of refraction is given by

nplasma(ω) =
√

1−ω2
p/ω2 < 1 (assuming ω>ωp) (7.15)

https://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh
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The phase velocity (7.13) is computed as

vp = ω1 +ω2

nplasma(ω1)ω1/c +nplasma(ω2)ω2/c
∼= c

nplasma(ω)
(7.16)

For convenience, we have taken ω1 and ω2 to lie very close to each other. Since
nplasma < 1, (7.16) shows that the phase velocity exceeds c. However, the group
velocity is

vg = ∆ω

∆k
∼= dω

dk
=

[
dk

dω

]−1

=
[

d

dω

ωnplasma (ω)

c

]−1

= nplasma (ω)c (7.17)

which is clearly less than c. The derivation of the final expression in (7.17) from
the previous one is left as an exercise.

Example 7.1 illustrates that in an environment where the index of refraction
is real (i.e. no net exchange of energy with the medium), the group velocity
does not exceed c, even when the phase velocity does. The ‘fast-moving’ phase
velocity vp results merely from an interplay between the field and the plasma.
In a similar sense, the intersection of an ocean wave with the shoreline can also
exceed c, if different points on the wave front happen to strike the shore nearly
simultaneously. The point of intersection between the wave and the shoreline
does not constitute an actual object under motion. Similarly, wave crests of a
wave, at least when interacting with a medium, do not necessarily constitute
actual objects in motion. That is, vp is not the relevant speed at which events
upstream influence events downstream in a medium.

Sir William Rowen Hamilton (1805–
1865, Irish) was born in Dublin, Ireland,
the fourth of nine children. At a very
early age, he showed a remarkable
ability to learn languages while living
with his uncle who was a linguist. He
became proficient in nearly a dozen
languages and in later life enjoyed read-
ing in various languages as a means of
relaxation. At age eight, Hamilton en-
tered a mental arithmetic contest against
a nine-year-old prodigy from America.
Hamilton lost and as a result determined
to spend much more time on mathe-
matics instead of languages. Hamilton
went on to make enormous contributions
to mathematical physics. His reformu-
lation of classical dynamics proved to
be the ideal framework for later devel-
opments in electrodynamics, quantum
mechanics, and quantum field theory.
Ironically, Hamilton was originally em-
ployed as an observational astronomer
at Dunsink Obervatory, a post for which
he was not particularly well suited. The
University of Dublin didn’t mind, however,
owing to the outstanding quality of his
theoretical pursuits. Hamilton is cred-
ited with first articulating the concept of
group velocity, although only abstracts
of his lectures on the subject have been
preserved: Researches respecting vi-
bration, connected with the theory of
light, Proc. Roy. Irish Acad. 1, 267, 341
(1839).(Wikipedia)

7.3 Frequency Spectrum of Light

Individual plane waves have infinite length and infinite duration. They do not
exist in isolation except in our imagination. Moreover, a waveform constructed
from a discrete sum (as in the previous two sections) must eventually repeat over
and over (i.e. it is periodic). To create a waveform that does not repeat (e.g. a
single laser pulse or, technically speaking, any waveform that exists in the physical
world since no light source repeats forever) we must replace the discrete sum (7.1)
with an integral that combines a continuum of plane waves. Such a waveform at
a point r can be expressed as

E(r, t ) = 1p
2π

∞∫
−∞

E (r,ω)e−iωt dω (7.18)

The function E (r,ω), called the spectrum, has units of field per frequency. Essen-
tially, it gives the amplitude and phase of each plane wave that makes up the over-
all waveform. It includes any spatially dependent factors such as exp{i k (ω) · r}.
We distinguish the spectrum E (r,ω) from the wholly separate function E(r, t ) by
its argument (i.e. ω instead of t ). (Sorry for using E for both functions, but this is

https://en.wikipedia.org/wiki/William_Rowan_Hamilton
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standard notation.) The operation (7.18) is called an inverse Fourier transform as
outlined in section 0.4; it would be a good idea to review section 0.4 thoroughly.
Now. Why haven’t you turned to section 0.4 yet? The factor 1/

p
2π is introduced to

match our Fourier-transform convention. Notice that (7.18) merely sums together
a range of plane waves in much the same way that the discrete summation (7.1)
does.

Given a waveform E(r, t), one might wonder what plane waves should be
added together in order to construct it. Equation (7.18) can be inverted, which
remarkably has a very similar form:

E (r,ω) = 1p
2π

∞∫
−∞

E (r, t )e iωt d t (7.19)

This operation is called the Fourier transform. It is used to generate the spectrum
E (r,ω) from the field E(r, t ) in much the same way that (7.18) is used to generate
the field E(r, t ) from the spectrum E (r,ω).

Although only the real part of E(r, t) is physically relevant, we can continue
our habit of working with the complex field and taking the real part of E (r, t ) at
our leisure.3 In fact, we will find it advantageous to work with the complex field
instead of only the real part. We will not run into trouble as long as we remember
never to discard the imaginary part of E (r,ω), only the imaginary part of E (r, t ).

The intensity formula (7.7) remains useful for continuous superpositions of
plane waves (i.e. a field defined by the inverse Fourier transform (7.18)):

I (r, t ) ≡ nϵ0c

2
E(r, t ) ·E∗ (r, t ) (7.20)

Remember, this formula specifically requires the fields to be in complex for-
mat, and it takes care of the time-average over rapid oscillations automatically.4

Moreover, the above expression for I (r, t ) assumes that all relevant k-vectors are
essentially parallel.

Similarly, we will define the power spectrum produced from E (r,ω), which we
write as

I (r,ω) ≡ nϵ0c

2
E (r,ω) ·E∗ (r,ω) (7.21)

The power spectrum I (r,ω) is what one observes when the waveform is sent into
a spectral analyzer or spectrometer. We must apologize again for the potentially
confusing notation (in wide usage): I (r,ω) is not the Fourier transform of I (r, t )!
They are defined exclusively through (7.20) and (7.21).

3Since Fourier transforms are linear, one can take the Fourier transform of the real and imaginary
parts of a field separately. Appropriate modifications to E (r,ω) in the frequency domain will not
cause the two parts to become mingled. Upon taking the inverse Fourier transform to obtain E(r, t )
again, the original real part remains purely real, and the original imaginary part remains purely
imaginary.

4To use this expression there needs to be a sufficient number of oscillations within the waveform
to make the rapid time average meaningful.
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Parseval’s theorem (see Example 0.7) imposes an interesting connection be-
tween the time-integral of the intensity and the frequency-integral of the power
spectrum:

∞∫
−∞

I (r, t )d t =
∞∫

−∞
I (r,ω)dω (7.22)

With the above formalities out of the way, we will illustrate the use of Fourier
transforms through some examples.

Figure 7.3 Real part of electric
field (7.23) with T = 2T0 and
T = 5T0, where T0 = 2π/ω0 is the
period of the carrier frequency.

Example 7.2

Find E (r,ω) associated with the field

E(r, t ) = E0 (r)e−t 2/
2T 2

e−iω0t (7.23)

The real part of this field is shown in Fig. 7.3 for two different durations T . The
intensity profile computed by (7.20) is shown in Fig. 7.4 .

Solution: The argument r is unimportant to our calculation. It merely specifies
that we are considering the field at the point r. We compute the Fourier transform
as follows:

E (r,ω) = 1p
2π

∞∫
−∞

E0 (r)e−t 2/
2T 2

e−iω0t e iωt d t

= E0 (r)p
2π

∞∫
−∞

e−t 2/2T 2+i (ω−ω0)t d t

(7.24)

This integral can be performed with the help of (0.55), and we obtain

Figure 7.4 The intensity (7.20) of
the fields in Fig. 7.3.

E (r,ω) = T E0 (r)e−
T 2(ω−ω0)2

2 (7.25)

Notice that E (r,ω) has units of field multiplied by time, or in other words, field per
frequency.

In general, E (r,ω) is a complex function. E (r,ω) keeps track of the amplitude
and phase of each plane wave needed to compose the waveform E(r, t ). More of-
ten than not, E (r,ω) exhibits a complicated complex phase structure, depending
on the time-shape of E(r, t ).

The spectrum of the field in Example 7.2 is shown in Fig. 7.5. The complex
phase turns out to be boringly uniform for this example; if E0 is real, the imaginary
part of the spectrum turns out to be zero for all frequencies. The corresponding
power spectrum (7.21) is plotted in Fig. 7.6. As expected, the waveform includes
frequencies in the neighborhood of ω0.

A range of frequencies are needed to construct a waveform that turns on
and off. The shorter the duration of the waveform, the wider the frequency
spectrum that is necessary. Note that the temporal width of the waveform (7.23)
is dictated by T while the spectral width of (7.25) is given byΩ≡ 1/T . This gives an
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uncertainty product TΩ= 1. This dictates the minimum spectral width necessary
to produce a pulse of a given duration.

Example 7.3

Check Parseval’s theorem for the field and spectrum in Example 7.2.

Solution: The time integration in (7.22) yields

∞∫
−∞

I (r, t )d t = nϵ0c

2
E0 (r) ·E∗

0 (r)

∞∫
−∞

e−t 2/
T 2

d t

= nϵ0c

2
E0 (r) ·E∗

0 (r)T
p
π

where we have used (0.55) to perform the integration. This result has units of
energy per area, called fluence. It is the total energy per area absorbed by a detector
over the entire pulse. The frequency integration in (7.22) yields

∞∫
−∞

I (r,ω)dω= nϵ0c

2
E0 (r) ·E∗

0 (r)T 2

∞∫
−∞

e−T 2(ω−ω0)2
dω

= nϵ0c

2
E0 (r) ·E∗

0 (r)T 2
p
π

T

which is the same answer.

Figure 7.5 Spectral components
(7.25) of the fields in Fig. 7.3 with
T = 4π/ω0 and T = 10π/ω0, where
2π/ω0 is the period of the carrier
frequency.

Figure 7.6 Power spectrum based
on (7.21) for the spectral compo-
nents shown in Fig. 7.5.

As mentioned previously, the inverse Fourier transform is interpreted as sum-
ming together many plane waves to create a waveform.

Example 7.4

Take the inverse Fourier transform of (7.25) to recover the original waveform (7.23).

Solution: The inverse Fourier transform (7.18) is

E(r, t ) = 1p
2π

∞∫
−∞

E (r,ω)e−iωt dω

= T E0 (r)p
2π

∞∫
−∞

e−
T 2(ω−ω0)2

2 e−iωt dω

= T E0 (r)p
2π

∞∫
−∞

e−
T 2ω2

2 +(T 2ω0−i t)ω− T 2ω0
2

2 dω

(7.26)

This integral can be performed with the help of (0.55), which gives

E(r, t ) = T E0(r)p
2π

√
π

T 2/2
e

(T 2ω0−i t)2

4(T 2/2) − T 2ω2
0

2

= E0 (r)e−t 2/
2T 2

e−iω0t
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Since only the real part of the time profile E(r, t) is physically relevant, you
might be curious about how the Fourier transform of the real part of the field
compares with that of the complex version of the field that we have been using.
Indeed, there are situations where it is more appropriate to use the real version
of the field rather than its complex form. For example, if a waveform includes
multiple propagation directions or if a waveform contains only a few cycles, then
the motivation/interpretation behind (7.20) and the convenience of the complex
format begin to wane.

Example 7.5

Take the Fourier transform of just the real part of waveform (7.23).

Solution: The real part of (7.23) is

Er (r, t ) = E(r, t )+E∗(r, t )

2

= e−t 2/
2T 2 E0 (r)e−iω0t +E∗

0 (r)e iω0t

2

(7.27)

If E0(r) is real, then this field can be written as E0 (r)e−t 2/2T 2
cos(ω0t ). The Fourier

transform (7.19) yields (see P0.24)

Er (r,ω) = T
E0 (r)e−

T 2(ω+ω0)2

2 +E∗
0 (r)e−

T 2(ω−ω0)2

2

2
(7.28)

The spectrum is shown in Fig. 7.7.

Figure 7.7 Spectrum based on
(7.28) with T = 10π/ω0. Compare
with the lower curve in Fig. 7.5

From the above example, you might notice that the transform of the real
part of a field tends to be more cumbersome than the transform of the entire
complex field. For the real field, both positive and negative frequency components
contribute to the overall spectrum.5 Moreover, the Fourier transform of a real
function Er (r, t ) obeys the symmetry relation

Er (r,−ω) = E∗
r (r,ω) (if Er (r, t ) is real) (7.29)

whereas the Fourier transform of the complex field depicted in Fig. 7.5 does not.

7.4 Wave Packet Propagation and Group Delay

Once we have the spectrum for a waveform (obtained by Fourier transform),
we can apply effects to the individual spectral components. In particular, we
can find how an overall waveform propagates in a uniform medium by taking
advantage of our knowledge of how individual plane waves propagate (as studied

5Essentially, the spectrum of the complex representation of the field can be understood to be
twice the spectrum of the real representation, but plotted only for the positive frequencies.
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in chapter 2). At any point in the medium, we can perform an inverse Fourier
transform, which recombines spectral components (i.e. plane waves) to reveal
how the overall waveform looks as a function of time. Thus, we will be able to
predict the temporal profile of a waveform at any location given knowledge of
that waveform at another location.6

Let E(r0, t) be the temporal profile of a pulse at some point r0 in a medium.
The spectrum of this pulse E(r0,ω) (found using (7.19)) gives the amplitudes and
phases of the individual plane wave components at the point r0. A phase shift
associated with a displacement ∆r modifies the spectral components according
to (see (2.20))

E (r0 +∆r,ω) = E (r0,ω)e i k(ω)·∆r (7.30)

The k-vector contains the frequency-dependent information about the material
via k = n(ω)ω/c.7 We take the inverse Fourier transform of E (r0 +∆r,ω) at the
new position to determine the waveform E (r0 +∆r, t ):

E(r0 +∆r, t ) = 1p
2π

∞∫
−∞

E(r0 +∆r,ω)e−iωt dω

= 1p
2π

∞∫
−∞

E(r0,ω)e i (k(ω)·∆r−ωt ) dω (7.31)

Example 7.6 If a waveform at r0 = 0 has the form E (0, t ) = E0e−t 2/2T 2
e−iω0t ,

compute the waveform at r = zẑ if propagation occurs in vacuum in the
z-direction.

Solution: Of course, after traversing ∆r = zẑ in vacuum, the waveform will
look the same, only arriving a time z/c later. We’ll demonstrate that the
tools described above yield this expected result. The Fourier transform of
the Gaussian pulse is given in (7.25):

E (0,ω) = T E0e−
T 2(ω−ω0)2

2

To find the field downstream we invoke (7.30), assuming k (ω) = kvac (ω) ẑ =
ω
c ẑ, which gives the appropriate phase shift for each plane wave compo-
nent:

E (z,ω) = E (0,ω)e i k(ω)·∆r = T E0e−
T 2(ω−ω0)2

2 e i ωc z

We compute the final waveform using (7.31) and obtain

E (z, t ) = 1p
2π

∞∫
−∞

E0Te−
T 2(ω−ω0)2

2 e i ωc z e−iωt dω= E0e−
(t−z/c)2

2T 2 e−iω0(t−z/c)

(7.32)
which is the original pulse delayed by z/c.

6See J. D. Jackson, Classical Electrodynamics, 3rd ed., Sect. 7.8 (New York: John Wiley, 1999).
7A complex wave vector k may also be used if absorption or amplification is present.
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A waveform propagating in a material such as glass can undergo significant
temporal dispersion, as different frequency components experience different
indices of refraction. Each frequency component propagates at its own phase
velocity. The speed of the pulse, however, can be quite different; the pulse as a
whole propagates approximately with the group velocity, as will be shown below.

The exponent in (7.30) is called the phase delay for the pulse propagation. It
is often expanded in a Taylor series about the pulse carrier frequency ω0:

k ·∆r ∼=
[

k|ω0 +
∂k

∂ω

∣∣∣∣
ω0

(ω−ω0)+ 1

2

∂2k

∂ω2

∣∣∣∣
ω0

(ω−ω0)2 +·· ·
]
·∆r (7.33)

The k-vector has a sometimes-complicated frequency dependence through the
functional form of n(ω). If we retain only the first two terms in this expansion
then (7.31) becomes

E(r0 +∆r, t ) = 1p
2π

∞∫
−∞

E(r0,ω)e
i
([

k(ω0)+ ∂k
∂ω

∣∣
ω0

(ω−ω0)
]
·∆r−ωt

)
dω

= e
i
[

k(ω0)−ω0
∂k
∂ω

∣∣
ω0

]
·∆r 1p

2π

∞∫
−∞

E (r0,ω)e
−iω

(
t− ∂k

∂ω

∣∣
ω0

·∆r
)

dω

= e i[k(ω0)·∆r−ω0t ′] 1p
2π

∞∫
−∞

E (r0,ω)e−iω(t−t ′) dω (7.34)

where in the last line we have introduced the definition

t ′ ≡ ∂k

∂ω

∣∣∣∣
ω0

·∆r (7.35)

The integral in (7.34) is recognized as the Fourier transform of the original pulse
with a new time argument:

E (r0 +∆r, t ) = E
(
r0, t − t ′

)
e i(k(ω0)·∆r−ω0t ′) (7.36)

Notice that (7.32) for propagating in vacuum agrees with this result, since kvac (ω0)·
∆r =ω0z/c . The second factor in (7.36) merely gives a phase shift governed by the
phase velocity of the carrier frequency (see (7.9)):

vp (ω0) = ω0

k (ω0)
(7.37)

The phase shift vanishes for propagation in vacuum. Ignoring the phase shift,
(7.36) is only altered by a delay t ′, the time required for the pulse to traverse the
displacement ∆r.

The function ∂k
/
∂ω ·∆r is known as the group delay function, and in (7.35) it

is evaluated at the carrier frequency ω0. Traditional group velocity is obtained by
dividing the displacement ∆r by the group delay time t ′ to obtain

v−1
g (ω0) = ∂k(ω)

∂ω

∣∣∣∣
ω0

(7.38)
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Group delay (or group velocity) essentially tracks the center of the pulse.
In our derivation we have assumed that the phase delay k(ω)·∆r could be well-

represented by the first two terms of the expansion (7.33). While this assumption
gives results that are often useful, higher-order terms can also play a role. In
section 7.5 we’ll find that the next term in the expansion controls the rate at which
the pulse spreads as it travels. We should also note that there are times when the
expansion (7.33) fails to converge (when ω0 is near a resonance of the medium),
and the above expansion approach is not valid. We’ll analyze pulse propagation
in this sticky situation in section 7.6.

7.5 Quadratic Dispersion

A light pulse traversing a material in general undergoes dispersion when different
frequency components propagate with different phase velocities. As an example,
consider a short laser pulse traversing an optical component such as a lens or
window, as depicted in Fig. 7.8. The short light pulse can broaden in time8 with
the different frequency components becoming separated (often called stretching
or chirping). If absorption (and surface reflections) can be neglected, then the
amplitude of E(r,ω) does not change – only its phase changes – and the power
spectrum (7.21) remains unaltered.

Continuing our example of a short pulse traversing a piece of glass, we assume
that the pulse travels in the ẑ-direction. We place r0 at the start of the glass where
we assign z = 0, so that k ·∆r = kz. We take the Fourier transform of pulse at z = 0
to determine the amplitudes and phases of the plane waves involved.

To find the waveform at the new position z (where the pulse presumably has
just exited the glass), we must adjust the phase of each plane wave by the factor
kz and take the inverse Fourier transform accruing to (7.31). Again, the function
k (ω) must be specified. Typically, the functional form of n (ω) spoils any chance
of doing the integral analytically. And as before, we will resort to the expansion
(7.33), but this time we will keep an additional term:

k (ω) z ∼= k0z + v−1
g (ω−ω0) z +α (ω−ω0)2 z +·· · (7.39)

where

k0 ≡ k (ω0) = ω0n (ω0)

c
(7.40)

v−1
g ≡ ∂k

∂ω

∣∣∣∣
ω0

= n (ω0)

c
+ ω0n′ (ω0)

c
(7.41)

α≡ 1

2

∂2k

∂ω2

∣∣∣∣
ω0

= n′ (ω0)

c
+ ω0n′′ (ω0)

2c
(7.42)

Unfortunately, even after resorting to the expansion we won’t be able to per-
form the inverse Fourier transform except for very specific initial pulses. However,

8See J. D. Jackson, Classical Electrodynamics, 3rd ed., Sect. 7.9 (New York: John Wiley, 1999).
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we can get an idea for how quadratic dispersion works by considering the specific
example of a Gaussian pulse.

Example 7.7

A Gaussian waveform similar to that in Example 7.6 propagates through a piece of
glass with thickness ∆r = z. Compute the waveform exiting the glass.

Solution: Again, the Fourier transform of the Gaussian pulse before propagation
is given by (7.25):

E (0,ω) = T E0e−
T 2(ω−ω0)2

2

25 fs
56 fs

Figure 7.8 A 25 fs pulse traversing
an ℓ= 1 cm piece of BK7 glass.

With the aid of expansion (7.39), the inverse Fourier transform (7.31) (which yields
the pulse after propagation) becomes

E (z, t ) = 1p
2π

∞∫
−∞

E0Te−
T 2(ω−ω0)2

2 e i k0z+i v−1
g (ω−ω0)z+iα(ω−ω0)2z e−iωt dω

= T E0e i (k0z−ω0t )

p
2π

∞∫
−∞

e−(T 2/2−iαz)(ω−ω0)2
e i v−1

g (ω−ω0)z−i (ω−ω0)t dω

(7.43)

We can avoid considerable clutter if we change variables to ω′ ≡ω−ω0. Then the
inverse Fourier transform becomes

E (z, t ) = T E0e i (k0z−ω0t )

p
2π

∞∫
−∞

e−
T 2
2 (1−i 2αz/T 2)ω′2−i(t−z/vg )ω′

dω′ (7.44)

The above integral can be performed with the aid of (0.55). The result is

E (z, t ) = T E0e i (k0z−ω0t )

p
2π

√
π

T 2

2

(
1− i 2αz/T 2

)e
− (t−z/vg )2

4 T 2
2 (1−i 2αz/T 2)

= E0e i (k0z−ω0t ) e
i
2 tan−1 2αz

T 2

4
√

1+ (
2αz/T 2

)2
e
− (t−z/vg )2

2T 2
(
1+(2αz/T 2)2

) (1+i 2αz/T 2)
(7.45)

Next, we spruce up the appearance of this rather cumbersome formula as follows:

E (z, t ) = E0√
T̃ (z)/T

e
− (t−z/vg )2

2T̃ 2(z) e
−i (t−z/vg )2

2T̃ 2(z)
Φ(z)+i (k0z−ω0t )+i 1

2 tan−1Φ(z)
(7.46)

where

Φ(z) ≡ 2α

T 2 z (7.47)

and
T̃ (z) ≡ T

√
1+Φ2(z) (7.48)
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Figure 7.9 Animation of a
Gaussian-envelope pulse (elec-
tric field) undergoing dispersion
during transit.

We can immediately make a few observations about (7.46). First, note that
at z = 0 (i.e. zero thickness of glass), (7.46) reduces to the input pulse E (0, t ) =
E0e−t 2/2T 2

e−iω0t , as it should. Secondly, the peak of the pulse moves at speed vg

since the factor e−(t−z/vg )2/2T̃ 2(z) controls the pulse amplitude, while the other
terms (multiplied by i ) in the exponent of (7.46) merely alter the phase. Also
note that the duration of the pulse increases and its peak intensity decreases as it
travels, since T̃ (z) increases with z. In P7.8 we will find that (7.46) also predicts
that for large z, the field of the spread-out pulse oscillates less rapidly at the begin-
ning of the pulse than at the end (assuming α> 0). This phenomenon, known as
pulse chirping, means that red frequencies get ahead of blue frequencies during
propagation since the red frequencies experience a lower index of refraction.

While Example 7.7 is worked out for the specific case of a Gaussian pulse,
the results are qualitatively similar for all pulses. The exact details vary with
pulse shape, but all short pulses eventually broaden and chirp as they propagate
through a dispersive medium such as glass. Higher-order terms in the expansion
(7.33) that were neglected cause additional spreading, chirping, and other defor-
mations to the pulses as they propagate. The influence of each order becomes
progressively more cumbersome to study analytically. It is easier to perform the
inverse Fourier transform numerically; there is no need to resort to the expansion
of k (ω) if the integration is done numerically.

7.6 Generalized Context for Group Delay

Figure 7.10 Real and imaginary
parts of the refractive index for an
absorptive medium.

The expansion of k (ω) in (7.33) is inconvenient if the frequency content (band-
width) of a waveform encompasses a substantial portion of a resonance structure.
In this case, it becomes necessary to retain a large number of terms in (7.33) to
describe accurately the phase delay k (ω) ·∆r. Moreover, if the bandwidth of the
waveform is wider than the spectral resonance of the medium, the series alto-
gether fails to converge. These difficulties have led to the traditional viewpoint
that group velocity loses meaning for broadband waveforms near a resonance. In
this section, we study a broader context for group velocity (or rather its inverse,
group delay dk/dω), which is always valid, even for broadband pulses where
the expansion (7.33) utterly fails. The analysis avoids the expansion and so is
not restricted to a narrowband context. Since the imaginary part of the index
becomes important near a resonance, we will need to treat k as complex.

We are interested in the arrival time of a waveform (or pulse) to a point, say,
where a detector is located. The definition of the arrival time of pulse energy
need only involve the Poynting flux (or the intensity), since it alone is responsible
for energy transport. To deal with arbitrary broadband pulses, the arrival time
should avoid presupposing a specific pulse shape, since the pulse may evolve
in complicated ways during propagation. For example, the pulse peak or the
midpoint on the rising edge of a pulse are poor indicators of arrival time if the
pulse contains multiple peaks or a long and nonuniform rise time.

https://vimeo.com/717105927
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Detector Detector

Initial Pulse Final Pulse

Figure 7.11 Transit time defined as the difference between arrival time at two points.

For the reasons given, we use a time expectation integral (or time ‘center-of-
mass’) to describe the arrival time of a pulse:

〈t〉r ≡

∞∫
−∞

t I (r, t ) d t

∞∫
−∞

I (r, t ) d t
(7.49)

For simplification, we have assumed that the light travels in a uniform direction
by using intensity rather than the Poynting vector.

Consider a pulse as it travels from point r0 to point r = r0 +∆r in a homoge-
neous medium. The difference in arrival times at the two points is

∆t ≡ 〈t〉r −〈t〉r0 (7.50)

The pulse shape can evolve in complicated ways between the two points, spread-
ing with different portions being absorbed (or amplified) during transit as de-
picted in Fig. 7.11. Nevertheless, (7.50) renders an unambiguous time interval
between the passage of the pulse center at each point.

After Propagation

Before Propagation

Figure 7.12 Normalized power
spectrum of a broadband pulse
before and after propagation
through an absorbing medium
with the complex index shown in
Fig. 7.10. The absorption line eats
a hole in the spectrum.

This difference in arrival time can be shown to consist of two terms (see
P7.11):9

∆t =∆tG (r)+∆tR (r0) (7.51)

The first term, called the net group delay, dominates if the field waveform is
initially symmetric in time (e.g. an unchirped Gaussian). It amounts to a spectral
average of the group delay function taken with respect to the spectral content of
the pulse arriving at the final point r = r0 +∆r:

∆tG (r) =

∞∫
−∞

I (r,ω)
(
∂Rek
∂ω ·∆r

)
dω

∞∫
−∞

I (r,ω) dω
(7.52)

where I (r,ω) is given in (7.21). The two curves in Fig. 7.12 show I (r0,ω) (before
propagation) and I (r,ω) (after propagation) for an initially Gaussian pulse. As

9M. Ware, S. A. Glasgow, and J. Peatross, “The Role of Group Velocity in Tracking Field Energy in
Linear Dielectrics,” Opt. Express 9, 506-518 (2001).
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seen in (7.52), the pulse travel time depends on the spectral shape of the pulse at
the end of propagation.

Note the close resemblance between the formulas (7.49) and (7.52). Both are
expectation integrals. The former is executed as a ‘center-of-mass’ integral on
time; the latter is executed in the frequency domain on ∂Rek ·∆r/∂ω, the group
delay function (7.38). The group delay at every frequency present in the pulse
influences the result. If the pulse has a narrow bandwidth in the neighborhood
of ω0, the integral reduces to ∂Rek/∂ω|ω0 ·∆r, in agreement with (7.38) (see P7.9).
The net group delay depends only on the spectral content of the pulse, indepen-
dent of its temporal organization (i.e. the phase of E (r,ω) has no influence). Only
the real part of the k-vector plays a direct role in (7.52).

Figure 7.13 The center of a
chirped pulse can shift owing to
the reshaping effect when a por-
tion of the spectrum is removed.

The second term in (7.51) is the reshaping delay ∆tR . It represents a delay
that arises solely from a reshaping of the spectral amplitude. Often this term is
negligible. The term takes into account how the pulse time center-of-mass shifts
as portions of the spectrum are removed (or added), as illustrated in Fig. 7.13. It
is computed at r0 before propagation takes place:10

∆tR (r0) = 〈t〉r0

∣∣
altered −〈t〉r0 (7.53)

Here 〈t〉r0 represents the usual arrival time of the pulse at the initial point r0,
according to (7.49). The intensity at this point is associated with a field E (r0, t )
whose spectrum is E (r0,ω). On the other hand, 〈t〉r0

∣∣
altered is the arrival time of

a pulse with modified spectrum E (r0,ω)e−Imk·∆r. Notice that E (r0,ω)e−Imk·∆r is
still evaluated at the initial point r0. Only the spectral amplitude (not the phase)
is modified, according to what is anticipated to be lost (or gained) during the trip.
In contrast to the net group delay, the reshaping delay is sensitive to how a pulse
is organized. The reshaping delay is negligible if the pulse is initially symmetric
(in amplitude and phase) before propagation. The reshaping delay also goes to
zero in the narrowband limit, and the total delay reduces to the net group delay.

Example 7.8

Find the time required for a Gaussian pulse (7.23) to traverse a slab of absorption
material (neglecting possible surface reflections). Let the material response be
described by the Lorentz model described in section 2.3 with the carrier frequency
of the pulse ω0, coinciding with the material resonance frequency. Let the slab
have thickness ∆r = cγ−1/10 and absorption strength ω2

p = 10γ.

Solution: The spectrum of the initially Gaussian pulse is given by (7.25), and its
power spectrum is11

I (r0,ω) ∝ e−T 2(ω−ω0)2

10The reshaping delay can instead be computed after propagation takes place, in which case the
net group delay should be computed with the initial rather than final spectrum.

11In general, one should write ω̃0 to distinguish the carrier frequency of the pulse from the
resonance frequency of the material ω0; in practice, these are often different.
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After propagating from r0 to r = r0 +∆r , the power spectrum becomes

I (r,ω) ∝ e−T 2(ω−ω0)2
e−2 κ(ω)ω

c ∆r

The net group delay is then

∆tG (r) =∆r

∞∫
−∞

I (r,ω)
(
∂(ωn/c)
∂ω

)
dω

∞∫
−∞

I (r,ω)dω
= ∆r

c

∞∫
−∞

e−T 2(ω−ω0)2
e−2 κω

c ∆r
(
n +ω ∂n

∂ω

)
dω

∞∫
−∞

e−T 2(ω−ω0)2
e−2 κω

c ∆r dω

The index of refraction n + iκ is given by (2.39) (see also (2.27) and (2.29)). Since
the expressions for n and κ are complicated, the integration in the above formula
must be performed numerically.

The result when T = T1 = 10γ−1/
p

2 (narrowband) is

∆tG =−5.1/γ=−51∆r /c =−0.72T1

and the result when T = T2 = γ−1/
p

2 (broadband) is

∆tG = 0.67/γ= 6.7∆r /c = 0.95T2

The reshaping delay (7.53) in both cases is negligible.

The narrowband pulse (with duration T1) in Example 7.8 traverses the ab-
sorbing medium superluminally (i.e. faster than c). The negative transit time
means that the ‘center-of-mass’ of the exiting pulse emerges even before the
‘center-of-mass’ of the entering pulse reaches the medium! On the other hand,
the broadband pulse (with the shorter duration T2) has a large positive delay time,
indicating that the exiting pulse emerges subluminally.

Figure 7.14 Animation compar-
ing narrowband vs. broadband
Gaussian pulses traversing an
absorbing slab (green stripe) on
resonance. Note the logarithmic
scale. See Example 7.8.

Figure 7.14 shows the intensity profiles for these two pulses as they traverse
the absorption slab, calculated with the aid of (7.31). By eye, one can see how
the centers of the two pulses are either advanced or delayed as they go through
the absorption medium. In both cases, the pulse that emerges is well within
the envelope of the original pulse propagated forward at c. In the case of the
broadband pulse, the absorption peak eats a hole in the center of the spectrum
as shown in Fig. 7.12, causing the emerging pulse to be distorted in time. The
analysis in this section predicts the center of pulses, whereas to see the shape of
pulses one needs to calculate (7.31).

Figure 7.15 Delay as a function of
pulse duration.

The results for the two pulse durations in Example 7.8 indicate a trend. Su-
perluminal behavior only occurs for long boring pulses. In the case of a single
absorption resonance, this comes with a severe cost of attenuation. Figure 7.15
shows the delay time as a function of pulse duration. As the injected pulse be-
comes more sharply defined in time, the superluminal behavior does not persist.
Sharply defined waveforms (i.e. broadband) cannot propagate superluminally
precisely because much of their bandwidth lies away from the frequencies with
superluminal group delays.

https://vimeo.com/717105902
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We should mention that superluminal propagation cannot persist for indefi-
nite distances since the medium eventually removes the superluminal spectral
components through absorption (or else adds subluminal spectral components
in the case of amplification). This limits the amount that a pulse center can be
advanced—on the scale of the pulse’s own duration.

Figure 7.16 Narrowband pulse
traversing an absorbing medium.

Figure 7.17 Animation compar-
ing narrowband vs. broadband
Gaussian pulses traversing an am-
plifying slab (green stripe) slightly
off resonance.

As we saw for the absorption situation the exiting pulse is tiny and resides
well within the original envelope of the pulse propagated forward at speed c, as
depicted in Fig. 7.16. Without the absorbing material in place, the signal would
be detectable just as early. This statement is also true for amplifying media.12

Figure 7.17 shows narrowband and broadband pulses traversing an amplifying
medium. In this case, superluminal behavior occurs for spectra near by but not
on an amplifying resonance. If the pulse is too broadband, its spectrum will be
amplified, which adds slower components to the overall group delay.

While it may be surprising at first to realize that group velocity can become
superluminal, it is to be expected for pulses whose spectra lie in the vicinity of a
medium resonance. Group velocity vg tracks the presence of field energy, whether
that energy propagates or is extracted from the medium at a point downstream.
Energy is never transported faster than the universal speed limit c. A detailed
analysis of energy flow is given in Appendix 7.B.

Appendix 7.A Pulse Chirping in a Grating Pair

Reflection grating pairs can be used to introduce large amounts of dispersion
into a light pulse. Gratings are especially useful for amplification of ultrashort
laser pulses, where laser pulses are first stretched in time before amplification (to
prevent damage to the amplifier) and then compressed back to short duration
just before the experiment (called chirped pulse amplification). Diffraction from a
grating causes each k-vector to travel at a different angle. A second grating parallel
to the first can realign all of the k-vectors to be parallel to each other. Since laser
beams are not infinitely wide, the light is typically sent through the grating pair
twice to undo the tendency of the different frequency components to become
laterally separated. In the present analysis, we will consider an infinitely wide
plane wave pulse incident upon a grating. The scenario is depicted in Fig. 7.18:
A short plane wave pulse strikes the grating at an angle, and a spreading pulse
emerges.

Consider a plane-wave pulse that ricochets between a pair of parallel grating
surfaces. Although different k-vectors point with different angles, they are all
straightened out upon diffracting from the second grating. For simplicity, we will
consider a pulse just before the first bounce and just after the second bounce,
even though we are interested in the dispersion that takes place between the
gratings. This allows us to treat the k-vectors as being parallel for purposes of
computing intensity.

Figure 7.18 Animation showing a
short plane-wave pulse diffracting
from a grating positioned along
the left edge of the frame.12You can use the Lorentz model (2.40) to describe an amplifying medium with a negative

oscillator strength f .

https://vimeo.com/717105917
https://vimeo.com/717105845
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Consider a plane wave incident on a grating at an incident angle θi with
respect to the grating normal (aligned with the x-axis in our coordinate system)
as depicted in Fig. 7.19. The plane wave diffracts from the first grating at an angle
θr (also referenced from the grating normal). This angle is governed by the grating
diffraction formula13

θr (ω) = sin−1
(

2πc

ωd
− sinθi

)
(7.54)

where d is the grating groove spacing. By examining the geometry of the figure,
we see that the reflected k-vector is given by k = (

x̂cosθr + ŷsinθr
)
ω/c.

Suppose we know the pulse at a point r0 on the first grating. Next we choose a
point r0 +∆r on the second grating where we will determine the outgoing pulse.
Since we are considering an infinitely wide plane-wave pulse, it doesn’t matter
where we choose that point as long as it lies on the surface of the second grating.
The waveform will be the same everywhere on the second grating, only with a
different arrival time. For convenience, we might as well take the second point to
be r0 +∆r = r0 +Lx̂ as shown in Fig. 7.19.

First
Grating

Second
Grating

Figure 7.19 Direction of k-vector
between parallel gratings (top
view). Grating rulings run in and
out of the page.

The phase delay needed for (7.30) becomes

k (ω) ·∆r = Lω

c
cosθr (7.55)

We will express this as a Taylor-series expansion similar to (7.39) so that we can
perform the inverse Fourier transform analytically. We will approximate (7.55) as

k (ω) ·∆r ≈ k0L+ v−1
g (ω−ω0)L+α (ω−ω0)2 L+·· · (7.56)

so that we can take advantage of formula (7.46). To calculate the terms in this
expansion we will need the derivative of (7.54):

dθr

dω
= 1√

1− ( 2πc
ωd − sinθi

)2

(
− 2πc

ω2d

)
= 1√

1− sin2θr

(
− 2πc

ω2d

)

=− 2πc

ω2d cosθr
=−sinθi + sinθr

ωcosθr

(7.57)

The derivatives of (7.55) necessary for the Taylor’s series expansion are

dk

dω
·∆r = L

c

(
cosθr −ωsinθr

dθr

dω

)
= L

c

(
cosθr + sinθr

sinθi + sinθr

cosθr

)
= L

c

(
1+ sinθr sinθi

cosθr

) (7.58)

and

13This formula is equivalent to d sinθi +d sinθr =λ with λ= 2πc/ω.
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d 2k

dω2 ·∆r = L

c

(
sinθi + sinθr (1+ sinθr sinθi )

cos2θr

)
dθr

dω

= L

c

(
sinθi + sinθr

cos2θr

)(
−sinθi + sinθr

ωcosθr

)
=− L

ωc

(sinθi + sinθr)2

cos3θr

(7.59)

The coefficients in (7.56) then are

k0 ≡ k|ω0 ·
∆r

L
= ω0

c
(7.60)

v−1
g ≡ dk

dω

∣∣∣∣
ω0

· ∆r

L
= 1+ sinθr sinθi

c cosθr

∣∣∣∣
ω0

(7.61)

α≡ 1

2

d 2k

dω2

∣∣∣∣
ω0

· ∆r

L
=− (sinθi + sinθr)2

2cωcos3θr

∣∣∣∣
ω0

(7.62)

In the case of a Gaussian pulse, we can employ (7.46), where L takes the place of
z, and k0, v−1

g and α are defined by (7.60) – (7.62). The duration of the pulse is
controlled by (7.62) and the spacing between the gratings L.

Appendix 7.B Causality and Exchange of Energy with the
Medium

As shown in section 7.6, the group delay function is useful for predicting when the
centroid of a light pulse will arrive to a point in space. Since this is only part of the
whole energy story, there is no problem when it becomes superluminal. The overly
rapid appearance of electromagnetic energy at one point and its simultaneous
disappearance at another point merely indicates an exchange of energy between
the electric field and the medium.14

We need not be dazzled by a magician who invites the audience to look only
at the field energy while energy transfers into and out of the ‘unwatched’ domain
of the medium. Extra field energy seems to appear ‘prematurely’ downstream
only if there is already nonzero field energy downstream to stimulate a transfer of
energy from the medium. The actual transport of energy is strictly bounded by c;
superluminal propagation of a sharp signal front is impossible.

In accordance with Poynting’s theorem (2.51), the total energy density stored
in an electromagnetic field and in a medium is given by

u(r, t ) = ufield (r, t )+umed(r, t )+u (r,−∞) (7.63)

14M. Ware, S. A. Glasgow, and J. Peatross, “Energy Transport in Linear Dielectrics,” Opt. Express 9,
519-532 (2001).
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where the time-dependent accumulation of energy transferred into the medium
from the field (ignoring possible free current Jfree) is

umed (r, t ) =
t∫

−∞
E

(
r, t ′

) · ∂P
(
r, t ′

)
∂t ′

d t ′ (7.64)

The expression (7.63) for the energy density includes all (relevant) forms of en-
ergy, including a nonzero integration constant u (r,−∞) corresponding to energy
stored in the medium before the arrival of any pulse (important in the case of an
amplifying medium). ufield(r, t) and umed(r, t) are both zero before the arrival of
the pulse (i.e. at t =−∞). In addition, ufield(r, t), given by (2.53), returns to zero
after the pulse has passed (i.e. at t =+∞).

As umed increases, the energy in the medium increases. Conversely, as umed

decreases, the medium surrenders energy to the electromagnetic field. While it is
possible for umed to become negative, the combination umed +u (−∞) (i.e. the net
energy in the medium) can never go negative since a material cannot surrender
more energy than it possesses to begin with.

Poynting’s theorem (2.51) has the form of a continuity equation which when
integrated spatially over a small volume V yields∮

A

S ·da =− ∂

∂t

∫
V

u dV (7.65)

where the left-hand side has been transformed into an surface integral (via the
divergence theorem (0.11)) representing the power leaving the volume. Let the
volume be small enough to take S to be uniform throughout V .

We can define an energy transport velocity (directed along S) as the effective
speed at which all of the energy density would need to travel in order to achieve
the Poynting flux:

vE ≡ S

u
(7.66)

Note that this ratio of the Poynting flux to the energy density has units of velocity.
When the total energy density u is used in computing (7.66), the energy transport
velocity has a fictitious nature; it is not the actual velocity of the total energy
(since part is stationary), but rather the effective velocity necessary to achieve
the same energy transport that the electromagnetic flux alone delivers. If we
reduce the denominator to the subset of the energy that can move, namely ufield,
the Cauchy-Schwartz inequality (i.e. α2 +β2 ≥ 2αβ) ensures an energy transport
velocity vE remains strictly bounded by the speed of light in vacuum c. The total
energy density u is at least as great as the field energy density ufield. Hence, this
strict luminality is maintained.

Centroid of Energy
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Consider a weighted average of the energy transport velocity:

〈vE 〉 ≡
∫

vE u d 3r∫
u d 3r

=
∫

S d 3r∫
u d 3r

(7.67)

where we have substituted from (7.66).

Integration by parts leads to

〈vE〉 =−
∫

r∇·S d 3r∫
u d 3r

=
∫

r ∂u
∂t d 3r∫
u d 3r

(7.68)

where we have assumed that the volume for the integration encloses all energy in
the system and that the field near the edges of this volume is zero. Since we have
included all energy, Poynting’s theorem (2.51) can be written with no source terms
(i.e. ∇·S+∂u/∂t = 0). This means that the total energy in the system is conserved
and is given by the integral in the denominator of (7.68). This allows the derivative
to be brought out in front of the entire expression giving

〈vE 〉 = ∂〈r〉
∂t

where 〈r〉 ≡
∫

ru d 3r∫
u d 3r

(7.69)

The latter expression represents the ‘center-of-mass’ or centroid of the total en-
ergy in the system, which is guaranteed to evolve strictly luminally since vE is
everywhere luminal.15

It is enlightening to consider umed within a frequency-domain context. In an
isotropic medium, the polarization for an individual plane wave can be written in
terms of the linear susceptibility defined in (2.16):

P (r,ω) = ϵ0χ (r,ω)E (r,ω) (7.70)

We can use this to express umed in terms of the electric field and material suscepti-
bility.

Scott A. Glasgow (1964–, American)
was born in Santa Fe, New Mexico.
While Scott Glasgow does not have
an entry in Wikipedia, the authors of this
book think he is a great guy. Prof. Glas-
gow teaches mathematics at Brigham
Young University. He worked out the
analysis presented in this appendix, in-
cluding the fact that a linear medium
responds to the instantaneous spectrum,
which explains within the framework of
a spectral analysis why a medium treats
the front and back of a pulse differently.
Prof. Glasgow is a competitive weight
lifter and the father of five children.

Expressing umed in terms of the power spectrum

15Although (7.69) guarantees that the centroid of the total energy moves strictly luminally, there is
no such limitation on the centroid of field energy alone. The steps leading to (7.69) are not possible
if ufield is used in place of u. Explicitly, that is〈

S

ufield

〉
̸= ∂

∂t

∫
rufieldd3r∫
ufieldd3r

As was pointed out, the left-hand side is strictly luminal. However, the right-hand side can easily
exceed c as the medium exchanges energy with the field. In an amplifying medium, for example, the
rapid appearance of a pulse downstream can occur when the leading portion of a pulse stimulates
energy already present in the medium to convert to the form of field energy. Group velocity is
related to this method of accounting, which is why it also can become superluminal.
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The field E(r, t ) can be expressed as an inverse Fourier transform (7.18). Similarly,
the polarization P can be written as16

P(r, t ) = 1p
2π

∞∫
−∞

P (r,ω)e−iωt dω⇒ ∂P(r, t )

∂t
= −ip

2π

∞∫
−∞

ωP (r,ω)e−iωt dω (7.71)

The energy density in the medium (7.64) can then be written as

umed (r,∞) =
∞∫

−∞

 1p
2π

∞∫
−∞

E
(
r,ω′)e−iω′t ′dω′

·
−iϵ0p

2π

∞∫
−∞

ωχ (r,ω)E (r,ω)e−iωt ′dω

d t ′

(7.72)

where we have incorporated (7.70) and evaluated umed after the pulse is over at
t =∞. We may change the order of integration and write

umed(r,∞) =−iϵ0

∞∫
−∞

dωωχ (r,ω)E (r,ω) ·
∞∫

−∞
dω′E

(
r,ω′) 1

2π

∞∫
−∞

e−i(ω+ω′)t ′d t ′

(7.73)
The final integral is a delta function a delta function similar to (0.54), which allows
the middle integral also to be performed. The expression for umed then reduces to

umed (r,∞) =−iϵ0

∞∫
−∞

ωχ (r,ω)E (r,ω) ·E (r,−ω) dω (7.74)

In this derivation, we take E(r, t ) and P(r, t ) to be real functions, so we can employ
the symmetry (7.29) along with

P∗ (r,ω) = P (r,−ω) and χ∗ (r,ω) =χ (r,−ω) .

Then we obtain

umed (r,∞) = ϵ0

∞∫
−∞

ωImχ (r,ω)E (r,ω) ·E∗ (r,ω) dω (7.75)

The expression (7.75) describes the net energy density transferred to a point
in the medium after all action has finished (i.e. at t =∞). It involves the power
spectrum of the pulse. We can modify this formula in an intuitive way so that it
describes the transfer of energy density to the medium for any time during the
pulse.

Since the medium is unable to anticipate the spectrum of the entire pulse
before experiencing it, the material responds to the pulse according to the history
of the field up to each instant. In particular, the material has to be prepared for
the possibility of an abrupt cessation of the pulse at any moment, in which case
all exchange of energy with the medium immediately ceases. In this extreme sce-
nario, there is no possibility for the medium to recover from previously incorrect
attenuation or amplification, so it must have gotten it right already.

16We assume that the real forms of the fields in the time domain are used for the sake of this
multiplication.
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If the pulse were in fact to abruptly terminate at a given instant, it would
not be necessary to integrate the inverse Fourier transform (7.19) beyond the
termination time t after which all contributions are zero. Causality requires that
the medium be indifferent to whether a pulse actually terminates if that possibility
lies in the future. Therefore, (7.75) can apply for any time t (not just for t =∞)
if the spectrum (7.19) is evaluated just for that portion of the field previously
experienced by the medium (up to time t ).

The following is then an exact representation for the energy density (7.64)
transferred to the medium:

umed(r, t ) = ϵ0

∞∫
−∞

ωImχ (r,ω)Et (r,ω) ·E∗
t (r,ω) dω (7.76)

where

Et (r,ω) ≡ 1p
2π

t∫
−∞

E
(
r, t ′

)
e iωt ′ d t ′ (7.77)

This time dependence enters only through Et (r,ω) ·E∗
t (r,ω), known as the instan-

taneous power spectrum.

Figure 7.20 Real and imaginary
parts of the refractive index for an
amplifying medium.

The expression (7.76) gives physical insight into the manner in which causal
dielectric materials exchange energy with different parts of an electromagnetic
pulse. Since the function Et (ω) is the Fourier transform of the pulse truncated
at the current time t and set to zero thereafter, it can include many frequency
components that are not present in the pulse taken in its entirety. This explains
why the medium can respond differently to the front of a pulse compared to the
back. Even though absorption or amplification resonances may lie outside of
the spectral envelope of a pulse taken in its entirety, the instantaneous spectrum
on a portion of the pulse can momentarily lap onto or off of resonances in the
medium.

In view of (7.76) and (7.77) it is straightforward to predict when the electro-
magnetic energy of a pulse will exhibit superluminal or subluminal behavior. In
section 7.5, we saw that this behavior is controlled by the group velocity function.
However, in (7.76) and (7.77), we see that it is also predictable from the imaginary
part of the susceptibility χ (r,ω).

If the entire pulse passing through point r has a spectrum in the neighborhood
of an amplifying resonance, but not on the resonance, superluminal behavior
can result. The instantaneous spectrum during the front portion of the pulse is
generally wider and can therefore lap onto the nearby gain peak. The medium
accordingly amplifies this perceived spectrum, and the front of the pulse grows.
The energy is then returned to the medium from the latter portion of the pulse
as the instantaneous spectrum narrows and withdraws from the gain peak. The
effect is not only consistent with the principle of causality, it is a direct and general
consequence of causality as demonstrated by (7.76) and (7.77).

Figure 7.21 Animation of a nar-
rowband pulse traversing an am-
plifying medium off resonance.
The black dot shows the move-
ment of the center of all energy.
The red line inside the medium
shows the energy held in that
medium, which cannot go neg-
ative. The lower figure shows the
instantaneous spectrum of the
pulse at the front of the medium
relative to the narrow amplifying
resonance.

As an illustration, consider the broadband waveform with T2 = γ−1/
p

2 de-
scribed in Example 7.8. Consider an amplifying medium with index shown in

https://vimeo.com/717105816
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Fig. 7.20 with the amplifying resonance (negative oscillator strength) set on the
frequency ω0 = ω̃0 +2γ, where ω̃0 is the carrier frequency. Thus, the resonance
structure is centered a modest distance above the carrier frequency, and there is
only minor spectral overlap between the pulse and the resonance structure.

Fig. 7.21 shows how the early portion of a pulse has a wide instantaneous
spectrum computed by (7.77) that laps onto the amplifying resonance. As the
wings grow and access the neighboring resonance, the pulse extracts more energy
from the medium. As the wings diminish, the pulse surrenders much of that
energy back to the medium, which shifts the center of the pulse forward producing
a superluminal effect.

In this appendix we have indirectly proven that a sharply defined signal edge
cannot propagate faster than c. If a signal edge begins abruptly at time t0, the
instantaneous spectrum Et (ω) clearly remains identically zero until that time. In
other words, no energy may be exchanged with the medium until the field energy
from the pulse arrives. Since, as was pointed out in connection with (7.66), the
Cauchy-Schwartz inequality prevents the field energy from traveling faster than c,
at no point in the medium can a signal front exceed c.

Appendix 7.C Kramers-Kronig Relations

In the late 1920s, of Hendrik Kramers and Ralph Kronig independently discovered
a remarkable relationship between the real and imaginary parts of a material’s
susceptibility χ (ω). Recall that the susceptibility as defined in (2.16) relates the
polarization of a material to the field that stimulates the medium:

P (ω) = ϵ0χ (ω)E (ω) (7.78)

They made an argument based on causality (i.e. effect cannot precede cause),
which allows one to obtain the real part of χ (ω) from the imaginary part of χ (ω),
if it is known for all ω. Similarly, one can obtain the imaginary part of χ (ω) from
the real part of χ (ω). We develop the Kramers-Kronig formulas below.17

We can replace E (ω) in (7.78) with the Fourier transform of E (t ) in accordance
with (7.19). In addition, we take the inverse Fourier transform (7.19) of both sides
of (7.78) and obtain

P (t ) = ϵ0p
2π

∞∫
−∞

χ (ω)

 1p
2π

∞∫
−∞

E
(
t ′

)
e iωt ′d t ′

e−iωt dω (7.79)

Next we interchange the order of integration to get

P (t ) = ϵ0

2π

∞∫
−∞

E
(
t ′

) ∞∫
−∞

χ (ω)e−iω(t−t ′)dω

d t ′ (7.80)

17See J. D. Jackson, Classical Electrodynamics, 3rd ed., Sect. 7.10 (New York: John Wiley, 1999).
Also B. Y.-K. Hu, “Kramers-Kronig in two lines,” Am. J. Phys. 57, 821 (1989).
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Now for the causality argument: The polarization of the medium P (t ) cannot
depend on the field E

(
t ′

)
at future times t ′ > t . Therefore the expression in square

brackets must be identically zero unless t − t ′ > 0. This places a restriction on the
functional form of χ (ω) as we shall see.

The causality argument comes explicitly into play when we employ the fol-
lowing integral formula:18

e−iω(t−t ′) = sign
{

t − t ′
} 1

iπ

∞∫
−∞

e−iω′(t−t ′)

ω−ω′ dω′ (7.81)

Apparently, we require the positive sign since

sign{t − t ′} ≡
{ +1 (t > t ′)

−1 (t < t ′)

Upon substitution of (7.81) into (7.80) and after changing the order of integra-
tion within the square brackets we obtain

P (t ) = ϵ0

2π

∞∫
−∞

E
(
t ′

) ∞∫
−∞

 1

iπ

∞∫
−∞

χ (ω)

ω−ω′ dω

e−iω′(t−t ′)dω′
d t ′ (7.82)

For (7.80) and (7.82) to be the same, we require

χ (ω) = 1

iπ

∞∫
−∞

χ
(
ω′)

ω′−ωdω′ (7.83)

or

Reχ (ω)+ i Imχ (ω) = 1

iπ

∞∫
−∞

Reχ
(
ω′)+ i Imχ

(
ω′)

ω′−ω dω′ (7.84)

Finally, equating separately the real and imaginary parts of the above equation
yields

Reχ (ω) = 1

π

∞∫
−∞

Imχ
(
ω′)

ω′−ω dω′ and Imχ (ω) =− 1

π

∞∫
−∞

Reχ
(
ω′)

ω′−ω dω′ (7.85)

These are known as the Kramers-Kronig relations on real and imaginary parts of
χ.19 If the real part ofχ is known at all frequencies, we can use the Kramers-Kronig

18This integral, which is a specific instance of Cauchy’s theorem, is tricky because it involves two
diverging pieces, to either side of the singularity ω=ω′. The divergences have opposite sign so that
they cancel. The integration must approach the singularity in the same manner from either side, in
which case the result is called the principal value. In practical terms, if the integral is performed
numerically, the sampling of points should straddle the singularity symmetrically; other sampling
schemes can change the result dramatically, which is incorrect.

19As with (7.81), the principal value of the integral must be calculated. If the integral is performed
numerically, the sampling of points should straddle the singularity symmetrically. Separately, the
integral on each side of ω′ =ω diverges, but with opposite sign.
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relations to generate the imaginary part, and vice versa. We see that the real and
imaginary parts of χ cannot be chosen independently, if we are to respect the
principle of causality.

Example 7.9

Show that the expression in square brackets of (7.80) is zero when t ′ > t , if χ (ω)
satisfies the Kramers-Kronig relations (7.85).

Solution: The expression may be written as

∞∫
−∞

χ (ω)e−iω(t−t ′)dω=
∞∫

−∞
Reχ (ω)e−iω(t−t ′)dω+ i

∞∫
−∞

Imχ (ω)e−iω(t−t ′)dω

=
∞∫

−∞
Reχ (ω)e−iω(t−t ′)dω+ i

∞∫
−∞

− 1

π

∞∫
−∞

Reχ
(
ω′)

ω′−ω dω′
e−iω(t−t ′)dω

=
∞∫

−∞
Reχ (ω)e−iω(t−t ′)dω+

∞∫
−∞

Reχ
(
ω′) 1

iπ

∞∫
−∞

e−iω(t−t ′)

ω′−ω dω

dω′

(7.86)

where we have invoked the Kramers-Kronig relation for Imχ (ω) (7.85) and inter-
changed the order of integration in the final expression. Since we are specifically
considering future times t ′ > t , we have by (7.81)

1

iπ

∞∫
−∞

e−iω(t−t ′)

ω′−ω dω=−e−iω′(t−t ′)

Hence

∞∫
−∞

χ (ω)e−iω(t−t ′)dω=
∞∫

−∞
Reχ (ω)e−iω(t−t ′)dω−

∞∫
−∞

Reχ
(
ω′)e−iω′(t−t ′)dω′

= 0

(7.87)

Finally, it is worth noting that the Kramers-Kronig relations also apply to the
real and imaginary parts of the index of refraction (subtract one). 20

n (ω)−1 = 1

π

∞∫
−∞

κ
(
ω′)

ω′−ωdω′ and κ (ω) =− 1

π

∞∫
−∞

n
(
ω′)−1

ω′−ω dω′ (7.88)

One can use the Kramers-Kronig relations to find the real part of the index from
a measurement of absorption, if the measurement is done over a broad enough

20This follows from Cauchy’s theorem since the index (subtract one) is the square root of χ (ω).
The Kramers-Kronig relations for χ (ω) guarantee that χ (ω) has no poles in the upper half complex
plane, when ω is considered (for mathematical purposes) to be a complex variable. Taking the
square root does not introduce poles into the upper half plane.
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range of the spectrum. This is the most useful form of the Kramers-Kronig rela-
tions.

It is sometimes convenient to multiply the numerator and denominator inside
the integrands of (7.88) by ω′+ω. Then noting that n is an even function and
κ is an odd function allows us to dismiss either ω′ or ω in the numerator and
integrate21 over positive frequencies only:

n (ω)−1 = 2

π

∞∫
0

ω′κ
(
ω′)

ω′2 −ω2 dω′ and κ (ω) =−2ω

π

∞∫
0

n
(
ω′)−1

ω′2 −ω2 dω′ (7.89)

21The integrals (7.88) and (7.89) diverge to either side of ω′ =ω, but with opposite sign. Again,
the principal value of the integral is required, which means a numeric grid should straddle the
singularity symmetrically.
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Exercises

Exercises for 7.1 Intensity of Superimposed Plane Waves

P7.1 (a) Consider two counter-propagating fields described by x̂E1e i (kz−ωt )

and x̂E2e i (−kz−ωt ) where E1 and E2 are both real. Show that their sum
can be written as

x̂Etot (z)e i (Φ(z)−ωt )

where

Etot (z) = E1

√(
1− E2

E1

)2

+4
E2

E1
cos2 kz

and

Φ (z) = tan−1
[

(1−E2/E1)

(1+E2/E1)
tankz

]
Outside the range −π

2 ≤ kz ≤ π
2 the pattern repeats.

(b) Suppose that two counter-propagating laser fields have separate
intensities, I1 and I2 = I1/100. The ratio of the fields is then E2/E1 =
1/10. In the standing interference pattern that results, what is the ratio
of the maximum intensity to the minimum intensity? Are you surprised
how high this is?

P7.2 Equation (7.7) implies that there is no interference between fields that
are polarized along orthogonal dimensions. That is, the intensity of

E(r, t ) = x̂E0e i [(k ẑ)·r−ωt ] + ŷE0e i [(kx̂)·r−ωt ]

according to (7.7) is uniform throughout space. Of course (7.7) does not
apply since the k-vectors are not parallel. Show that the time-average
of S (r, t ) according to (7.4) exhibits interference in the distribution of
net energy flow.

HINT: To get the B-field, see P1.2.

Exercises for 7.2 Group vs. Phase Velocity: Sum of Two Plane Waves

P7.3 Show that (7.10) can be written as

E(r, t ) = 2E0e
i
(

k2+k1
2 ·r−ω2+ω1

2 t
)

cos

(
∆k

2
· r− ∆ω

2
t

)
From this show that the speed of the rapid-oscillation intensity peaks
in Fig. 7.2 is vp = ω̄/k̄ where

k̄ ≡ (k1 +k2)

2
and ω̄≡ (ω1 +ω2)

2

P7.4 Confirm the right-hand side of (7.17).
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Exercises for 7.3 Frequency Spectrum of Light

P7.5 The continuous field of a very narrowband continuous laser may be
approximated as a pure plane wave: E(r, t ) = E0e i (k0z−ω0t ). Suppose the
wave encounters a shutter at the plane z = 0.

(a) Compute the power spectrum of the light before the shutter. HINT:
The answer is proportional to the square of a delta function centered
on ω0 (see (0.54)).

(b) Compute the power spectrum after the shutter if it is opened during
the interval −T /2 ≤ t ≤ T /2. Plot the result. Are you surprised that the
shutter appears to create extra frequency components?

HINT: Write your answer in terms of the sinc function defined by
sincα≡ sinα/α.

P7.6 (a) Consider the Gaussian pulse defined in (7.23). Determine the full
width at half maximum (FWHM) of the intensity I (r, t), represented
by TFWHM (or ∆tFWHM if you wish), and FWHM of the power spectrum
I (r,ω), represented by ΩFWHM (or ∆ωFWHM if you wish).

HINT: Both answers are in terms of T .

(b) Give an uncertainty principle for the product of ∆tFWHM∆ωFWHM.

Exercises for 7.5 Quadratic Dispersion

P7.7 The intensity of a laser pulse is Gaussian in time with a full width at
half maximum duration TFWHM = 25 fs and carrier frequency ω0 corre-
sponding to λvac = 800 nm. The pulse goes through a lens of thickness
ℓ= 1 cm (glass type BK7) with index of refraction given approximately
by

n (ω) ∼= 1.4948+0.016
ω

ω0

What is the full width at half maximum duration of the intensity for the
emerging pulse?

HINT: For the input pulse we have

T = TFWHM

2
p

ln2

(see P7.6).

P7.8 If the pulse defined in (7.46) travels through the material for a very
long distance z such that T̃ (z) → TΦ (z), show that the instantaneous
frequency of the pulse (defined to be the time derivative of the overall
phase) is

ω0 +
t − z/vg

2αz



200 Chapter 7 Superposition of Quasi-Parallel Plane Waves

COMMENT: As the wave travels, the earlier part of the pulse oscillates
more slowly than the later part. This is called chirp, and it means
that the red frequencies get ahead of the blue ones since they experi-
ence a lower index. The instantaneous frequency is the effective local
frequency.

Exercises for 7.6 Generalized Context for Group Delay

P7.9 When the spectrum of a pulse is narrow compared to the resonant
spectral features of a material (like that depicted in Fig. 7.10), the re-
shaping delay (7.53) can be neglected. Show that the net delay in this
case (7.52) reduces to

lim
T→∞

∆tG (r) = ∂Rek

∂ω
·∆r

∣∣∣∣
ω̄

HINT: The spectral intensity may be approximated as I (ω) = I0δ (ω− ω̄).

P7.10 When the spectrum a pulse is very broad, the reshaping delay (7.53) is
negligible. Show that in this case the net delay reduces to

lim
T→0

∆tG (r) = ∆r

c

assuming k and ∆r are parallel. This implies that a sharply defined
signal cannot travel faster than c.

HINT: The real index of refraction n goes to unity far from resonance,
and the imaginary part κ goes to zero.

P7.11 Show that equation (7.49) can be written as

〈t〉 =−i

∞∫
−∞

dω
[
∂
∂ωE (r,ω)

]
·E∗ (r,ω)

∞∫
−∞

dωE (r,ω) ·E∗ (r,ω)
≡ T [E (r,ω)]

HINT: Parseval’s theorem (7.21) can be used in the denominator. In
the numerator, substitute (7.18) for both fields, with ω and ω′ as the
dummy variables. Reorder integration to perform the time integral
first. The following trick is handy:

1
2π

∞∫
−∞

te−i(ω′−ω)t d t =−i ∂
∂ω

1
2π

∞∫
−∞

e−i(ω′−ω)t d t =−i ∂
∂ωδ

(
ω′−ω)

.

P7.12 Use the result of P 7.11 to derive (7.51).

HINT: Compute

∆t = T [E (r0 +∆r,ω)]−T [E (r0,ω)] .
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and note that

E (r0 +∆r,ω) = e i k·∆rE (r0,ω) = e i Re[k·∆r]e−Im[k·∆r]E (r0,ω)

The reshaping delay is

∆tR ≡ T
[

e−Imk·∆rE (r0,ω)
]
−T [E (r0,ω)]

The main effort is in showing

T [E (r0 +∆r,ω)] = T
[

e−Im[k·∆r]E (r0,ω)
]
+

∞∫
−∞

dω
(
∂
∂ω

Rek ·∆r
)

E (r0 +∆r,ω) ·E∗ (r0 +∆r,ω)

∞∫
−∞

dωE (r0 +∆r,ω) ·E∗ (r0 +∆r,ω)

Exercises for 7.A Pulse Chirping in a Grating Pair

P7.13 A Gaussian pulse with T = 25 fs is incident with θi = 32◦ on a grating
pair with groove separation d = 0.833 µm. What grating separation L
will lead to a pulse duration of T = 100 ps? Assume two passes through
the grating pair for a total effective separation of 2L. Take the pulse
carrier frequency to corresponds to λ0 = 800 nm.





Chapter 8

Coherence Theory

Coherence theory is the study of correlations that exist between different parts
of a light field. Temporal coherence indicates a correlation between fields offset
in time, E(r, t) and E(r, t −τ). Spatial coherence has to do with correlations be-
tween fields at different spatial locations, E(r, t) and E(r+∆r, t). Because light
oscillations are too fast to resolve directly, we usually need to study optical co-
herence using interference techniques. In these techniques, light from different
times or places in the light field are brought together at a detection point. If
the two fields have a high degree of coherence, they consistently interfere either
constructively or destructively at the detection point. If the two fields are not
coherent, the interference at the detection point rapidly fluctuates between con-
structive and destructive interference, so that a time-averaged signal does not
show interference.

You are probably already familiar with two instruments that measure coher-
ence: the Michelson interferometer, which measures temporal coherence, and
Young’s two-slit interferometer, which measures spatial coherence. Your pre-
liminary understanding of these instruments was probably gained in terms of
single-frequency plane waves, which are perfectly coherent for all separations in
time and space. In this chapter, we build on that foundation and derive descrip-
tions that are appropriate when light with imperfect coherence is sent through
these instruments. We also discuss a practical application known as Fourier spec-
troscopy (Section 8.4) which allows us to measure the spectrum of light using a
Michelson interferometer rather than a grating spectrometer.

8.1 Michelson Interferometer

Beam
Splitter

Detector

Figure 8.1 Michelson interferome-
ter.

A Michelson interferometer employs a 50:50 beamsplitter to divide an initial
beam into two identical beams and then delays one beam with respect to the
other before bringing them back together (see Fig. 8.1). Depending on the relative
path difference d (round trip by our convention) between the two arms of the
system, the light can interfere constructively or destructively in the direction of
the detector. The relative path difference d introduces a time delay τ, defined by

203
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τ≡ d/c.

Figure 8.2 The intensity seen at
the detector of a Michelson in-
terferometer with a plane-wave
input, as a function of the time
delay τ. Because the plane wave
is coherent over an infinite dis-
tance, the output oscillates with-
out diminishing as the delay τ is
adjusted in either direction. When
the intensity at the detector is zero,
all of the light is reflected back to
the source.

If the input light is a plane wave, the net field at the detector consists of the
field coming from one arm of the interferometer E0e i (kz−ωt ) added to the field
coming from the other arm E0e i (kz−ω(t−τ)). These two fields are identical except
for the delay τ. The intensity seen at the detector as a function of path difference
is computed to be

Itot (τ) = cϵ0

2

[
E0e i (kz−ωt ) +E0e i (kz−ω(t−τ))

]
·
[

E0e i (kz−ωt ) +E0e i (kz−ω(t−τ))
]∗

= cϵ0

2

[
2E0 ·E∗

0 +2E0 ·E∗
0 cos(ωτ)

]
= 2I0 [1+cos(ωτ)]

(Plane Wave Input) (8.1)
where I0 ≡ cϵ0

2 E0 ·E∗
0 is the intensity from one beam alone (when the other arm of

the interferometer is blocked). This formula is probably familiar. It describes how
the intensity at the detector oscillates between zero and four times the intensity
from one beam,1 as plotted in Fig. 8.2.

When light containing a continuous band of frequencies is sent through
the interferometer, (8.1) no longer holds. Instead of repeating indefinitely, the
oscillations at the detector become less pronounced as τ increases. The concept
of temporal coherence describes how fast fringe visibility diminishes as delay is
introduced in an arm of the Michelson interferometer. The less coherent the
light source, the faster the fringes die out as the delay τ increases. To model this
behavior, we need to expand our analysis beyond (8.1).

Consider an arbitrary waveform E(t ) (comprised of many frequency compo-
nents) that has traveled through the first arm of a Michelson interferometer to
arrive at the detector in Fig. 8.1. The beam that travels through the second arm
of the interferometer is identical, but delayed by the round-trip delay τ: E (t −τ).
The total field at the detector is the sum of these two fields:

Etot(t ,τ) = E (t )+E (t −τ) (8.2)

The total intensity Itot at the detector is found using (7.20) (with n = 1):

Itot (t ,τ) = cϵ0

2
Etot(t ,τ) ·E∗

tot(t ,τ)

= cϵ0

2

[
E(t ) ·E∗(t )+E(t ) ·E∗(t −τ)+E(t −τ) ·E∗(t )+E(t −τ) ·E∗(t −τ)

]
= I (t )+ I (t −τ)+ cϵ0

2

[
E(t ) ·E∗(t −τ)+E(t −τ) ·E∗(t )

]
= I (t )+ I (t −τ)+ cϵ0Re

{
E(t ) ·E∗(t −τ)

}
(8.3)

As a reminder, the function I (t ) = cϵ0
2 E(t ) ·E∗(t ) corresponds to the intensity

of the first beam at the detector when the second arm of the interferometer is

1Keep in mind that if a 50:50 beam splitter is used, then the intensity arriving to the detector
from one arm alone (with other arm blocked) is one fourth of the original beam, since the light
meets the beam splitter twice.
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blocked. The rapid oscillations of the light are automatically averaged away in
I (t) since we used (7.20), but the slowly varying envelope of the arbitrary pulse
is retained. The intensity of the combined beams Itot (t ,τ) varies with t and also
depends on the path delay τ.

Albert Abraham Michelson (1852–
1931, United States) was born in Poland,
but he immigrated to the US with his
parents and grew up in the rough mining
towns of California and Nevada where
his father was a merchant. Michelson
attended high school in San Francisco.
He entered the US Naval Academy in
1869 (with intervention from US Presi-
dent Grant after Michelson pleaded his
case when the president was walking
near the White House). After two years
at sea, Michelson returned to the Naval
Academy to teach physics and mathe-
matics for several years. Michelson was
fascinated by the problem of determining
the speed of light, and developed suc-
cessive experiments to measure it more
accurately. He is probably most famous
for his experiment conducted at Case
School of Applied Science in Cleveland
with Edward Morley to detect the motion
of the earth through the ether. Michelson
later was a professor at the University of
Chicago and then at Caltech. In 1907,
he became the first American to win the
Nobel prize, for his contributions to op-
tics. Michelson married late in life and
was the father of four. (Wikipedia)

We consider I (t ) to be a pulse with a finite duration. We will be interested in
the total amount of energy (per area) that the pulse deposits on a detector.2 The
detected signal, which we’ll denote by Sig(τ), is the time-integrated intensity or
fluence, having units of energy per area:

Sig(τ) ∝
∞∫

−∞
Itot (t ,τ)d t (8.4)

The proportionality accounts for the calibration of the detector, which might
report in volts or current, etc. The fluence arriving at the detector is sensitive
to the delay τ between the arms of the interferometer. Presumably, we can
repeatedly send identical pulses into the interferometer and record Sig(τ) for
many different delays τ. We can manipulate the fluence integral in (8.4) into a
more useful form that will make the coherence properties more evident.

Manipulation of the fluence integral

Inserting (8.3) into the fluence integral, we have

∞∫
−∞

Itot (t ,τ)d t =
∞∫

−∞
I (t )d t +

∞∫
−∞

I (t −τ)d t + cϵ0Re

∞∫
−∞

E (t ) ·E∗ (t −τ)d t (8.5)

The first two integrals on the right-hand side of (8.5) are equal,3 and give the
fluence E from either arm of the interferometer when the other arm is blocked:

E ≡
∞∫

−∞
I (t )d t =

∞∫
−∞

I (t −τ)d t (8.6)

The final integral in (8.5) remains unchanged if we take a Fourier transform fol-
lowed by an inverse Fourier transform:

∞∫
−∞

E(t ) ·E∗ (t −τ)d t = 1p
2π

∞∫
−∞

dωe−iωτ

 1p
2π

∞∫
−∞

dτe iωτ

∞∫
−∞

E (t ) ·E∗ (t −τ)d t


(8.7)

The reason for this procedure is so that we can take advantage of the autocor-
relation theorem described in P0.27. With it, the expression in square brackets
simplifies to

p
2πE (ω) ·E∗ (ω) =p

2π2I (ω)/cϵ0. Then with the aid of (8.6) and (8.7),
the overall fluence (8.5) becomes

∞∫
−∞

Itot (t ,τ)d t = 2E

1+ 1

E
Re

∞∫
−∞

I (ω)e−iωτdω

 (8.8)

2For sub-nanosecond laser pulses, a detector automatically integrates the entire energy of the
pulse since a detector cannot keep up with temporal variations on such a rapid time scale.

3Note that the second integral is insensitive to τ since a change of variables t ′ = t −τ converts it
into the first integral.

https://en.wikipedia.org/wiki/Albert_Abraham_Michelson


206 Chapter 8 Coherence Theory

With (8.8), we can rewrite the physical signal (8.4) in the more useful form

Sig(τ) ∝ 2E
[
1+Re

{
γ (τ)

}]
(8.9)

where the dependence on the path delay τ is entirely contained in the degree of
coherence function γ (τ):4

γ (τ) ≡

∞∫
−∞

I (ω)e−iωτdω

∞∫
−∞

I (ω)dω
(8.10)

The denominator of (8.10) was rewritten with the help of Parseval’s theorem
E ≡ ∫ ∞

−∞ I (t )d t = ∫ ∞
−∞ I (ω)dω. Remarkably, the signal out of the Michelson inter-

ferometer does not depend on the phase of E (ω). It depends only on the amount
of light associated with each frequency through I (ω) ≡ ϵ0c

2 E (ω) ·E∗ (ω).

Alternate derivation of (8.9)

We could have derived (8.9) using another strategy, which may seem more intuitive
than the approach above. Equation (8.1) gives the intensity at the detector when a
single plane wave of frequency ω goes through the interferometer. Now suppose
that a waveform composed of many frequencies is sent through the interferometer.
The intensity associated with each frequency acts independently, obeying (8.1)
individually.

The total energy (per area) accumulated at the detector is then a linear superposi-
tion of the spectral intensities of all frequencies present:

∞∫
−∞

Itot (ω,τ)dω=
∞∫

−∞
2I (ω) [1+cos(ωτ)]dω (8.11)

While this procedure may seem obvious, the fact that we can do it is remarkable!
Remember that it is usually the fields that we must add together before finding the
intensity of the resulting superposition. The formula (8.11) with its superposition
of intensities relies on the fact that the different frequencies inside the interferom-
eter when time-averaged (over all time) do not interfere. Certainly, the fields at
different frequencies do interfere (or beat in time). However, they constructively
interfere as often as they destructively interfere, and in a time-averaged picture it
is as though the individual frequency components transmit independently. Again,
in writing (8.11) we considered the light to be pulsed rather than continuous so
that the integrals converge.

We can manipulate (8.11) as follows:

∞∫
−∞

Itot (ω,τ)dω=
2

∞∫
−∞

I (ω)dω


1+

∞∫
−∞

I (ω)cos(ωτ)dω

∞∫
−∞

I (ω)dω

 (8.12)

4M. Born and E. Wolf, Principles of Optics, 7th ed., p. 570 (Cambridge University Press, 1999).
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This is the same as (8.8) since we can replace cos(ωτ) with Re
{
e−iωτ

}
, and we can

apply Parseval’s theorem (8.6) to the other integrals. Thus, the above arguments
lead to (8.9) and (8.10).

-1 0 1
0

Figure 8.3 The output or signal
from a Michelson interferometer
for light with a Gaussian spec-
trum.

Example 8.1

Compute the output signal when a Gaussian pulse with spectrum (7.25) is sent
into a Michelson interferometer.

Solution: The power spectrum of the pulse is5

I (ω) = ϵ0c

2
E0 ·E∗

0 T 2e−T 2(ω−ω0)2

where T is the pulse duration, not to be confused with τ, the delay of the interfer-
ometer arm. As shown in Example 7.3, we also have

∞∫
−∞

I (ω)dω= ϵ0c

2
E0 ·E∗

0 T
p
π

The degree of coherence (8.10) is then

γ (τ) = Tp
π

∞∫
−∞

e−T 2(ω−ω0)2
e−iωτdω

= Tp
π

∞∫
−∞

e−T 2ω2+(2T 2ω0−iτ)ω−T 2ω2
0 dω= Tp

π

√
π

T 2 e
(2T 2ω0−iτ)2

4T 2 −T 2ω2
0

= e−
τ2

4T 2 e−iω0τ

Formula (0.55) was used to complete the integration. According to (8.9), the signal
at the detector is then

Sig(τ) ∝ 2E
[
1+Re

{
γ (τ)

}]= 2E

[
1+e−

τ2

4T 2 cos(ω0τ)

]
Figure 8.3 shows this signal for a given T . As delay is added (or subtracted), the
output signal oscillates. Eventually enough delay is introduced such that the
very short pulses no longer interfere (arriving sequentially), and the output signal
becomes steady.

8.2 Coherence Time and Fringe Visibility

The degree of coherence function γ (τ) describes the oscillations in intensity
at the detector as the mirror in one arm of the interferometer is moved. The

5Technically, the output intensity is one fourth this, but our calculation of the degree of coher-
ence is insensitive to amplitude.
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real part of γ (τ) is analogous to cos(ωτ) in (8.1). However, for large delays τ,
the oscillations tend to die off as different frequencies get out of sync—some
interfere constructively, while others interfere destructively. Narrowband light is
temporally more coherent than broadband light because there is less opportunity
for frequencies to get out of sync. Still, for large path differences, the oscillations
eventually die off, and the time-integrated intensity at the detector then remains
steady as the mirror is moved further.

The coherence time τc is the amount of delay necessary to cause γ(τ) to quit
oscillating (i.e. its amplitude approaches zero). This definition is not very precise,
since the oscillations do not usually have an abrupt end, but instead slowly die off
as τ increases. A useful (although arbitrary) analytic definition for the coherence
time is

τc ≡
∞∫

−∞

∣∣γ (τ)
∣∣2 dτ= 2

∞∫
0

∣∣γ (τ)
∣∣2 dτ (8.13)

The coherence length is the distance that light travels in this time:

ℓc ≡ cτc (8.14)

Figure 8.4 Re
{
γ(τ)

}
(solid) and

|γ(τ)| (dashed) for a light pulse
with a Gaussian spectrum as in
examples 8.1 and 8.2.

Another useful concept is fringe visibility. The fringe visibility is defined in
the following way:

V (τ) ≡ max
[
Sig(τ)

]−min
[
Sig(τ)

]
max

[
Sig(τ)

]+min
[
Sig(τ)

] (8.15)

where max
[
Sig(τ)

]
refers to the detector signal when the mirror is positioned

such that the amount of throughput to the detector is a local maximum, and
min

[
Sig(τ)

]
refers to the detector signal when the mirror is positioned such that

the amount of throughput to the detector is a local minimum. The minimum
and the maximum don’t occur at exactly the same τ, but the difference in τ is
only about half an optical period. As the mirror moves a large distance from the
equal-path-length position, the oscillations in Sig(τ) become less pronounced
as the max and min tend to the same value, and the fringe visibility goes to zero
when γ (τ) = 0. It is left as an exercise (see P8.1) to show that the fringe visibility
can be written simply as6

V (τ) = ∣∣γ (τ)
∣∣ (8.16)

Note that the fringe visibility depends only upon the frequency content of the
light without regard to whether the frequency components are organized into a
short pulse or a longer time pattern.

Example 8.2

Find the fringe visibility and the coherence time for the Gaussian pulse studied in
Example 8.1.

6M. Born and E. Wolf, Principles of Optics, 7th ed., p. 570 (Cambridge University Press, 1999).
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Solution: By (8.16), the fringe visibility is

V (τ) = ∣∣γ (τ)
∣∣= e−

τ2

4T 2 .

This is shown as the dashed line in Fig. 8.4. As expected, the fringe visibility dies
off as delay τ gets farther from the origin (i.e. where the interferometer arms are
equidistant). From (8.13) the coherence time is

τc =
∞∫

−∞

∣∣γ (τ)
∣∣2 dτ=

∞∫
−∞

e−
τ2

2T 2 dτ=p
2πT

which is the delay necessary to cause the fringes to substantially diminish.

8.3 Temporal Coherence of Continuous Sources

Consider a continuous light source such as starlight or a continuous wave (CW)
laser. The integral

∫ ∞
−∞ I (t )d t diverges for such a source, since it is on forever

(or at least for a very long time) and emits infinite (or very much) total energy.
The concept of fluence (i.e. total energy) in this case is not very useful. However,
note that the integrals on both sides of (8.5) diverge in the same way. We can
renormalize (8.5) in this case by replacing the integrals on each side with the
average value of the intensity:

Iave ≡ 〈I (t )〉t =
1

T

T /2∫
−T /2

I (t )d t (continuous source) (8.17)

The duration T must be large enough to average over any fluctuations that are
present in the light source.

For a continuous light source, the signal at the detector (8.9) becomes

Sig(τ) ∝ 2〈I (t )〉t
[
1+Re

{
γ (τ)

}]
(continuous source) (8.18)

Although technically the integrals used in (8.10) to compute γ (τ) also diverge in
the case of continuous light, the numerator and the denominator diverge in the
same way. Therefore, we may renormalize I (ω) in a similar fashion to deal with
this problem. The units in the numerator and denominator cancel so that γ (τ)
always remains dimensionless. Once we have the degree of coherence function
γ(τ), we can calculate the coherence time and fringe visibility just as we did for
pulsed sources.

8.4 Fourier Spectroscopy

As we saw in (8.8), the signal output from a Michelson interferometer for a pulsed
input may be written as

Sig(τ) ∝ 2E +2Re

∞∫
−∞

I (ω)e−iωτdω (8.19)
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Given a measurement of Sig(τ), we might like to find the power spectrum I (ω)
that gave it. Unfortunately, I (ω) is buried within an integral in (8.19). However,
since the integral looks like an inverse Fourier transform of I (ω), we will be able
to extract the desired spectrum with a bit of work. This procedure for extracting
I (ω) from an interferometric measurement is known as Fourier spectroscopy.7

Extracting I (ω)

We first take the Fourier transform of (8.19):8

F
{
Sig(τ)

}∝F {2E }+F

2Re

∞∫
−∞

I (ω)e−iωτdω

 (8.20)

The left-hand side is known since it is the measured data, and a computer can be
employed to take the Fourier transform of it. The first term on the right-hand side
is the Fourier transform of a constant:

F {2E } = 2E
1p
2π

∞∫
−∞

e iωτdτ= 2E
p

2πδ (ω) (8.21)

Notice that (8.21) is zero everywhere except where ω = 0, where a spike occurs.
This represents the DC component of F

{
Sig(τ)

}
.

The second term of (8.20) can be written as

F

2Re

∞∫
−∞

I (ω)e−iωτdω

=F


∞∫

−∞
I (ω)e−iωτdω+

∞∫
−∞

I (ω)e iωτdω


Carrying out the Fourier transforms gives

∞∫
−∞

 1p
2π

∞∫
−∞

I (ω′)e−iω′τdω′
e iωτdτ+

∞∫
−∞

 1p
2π

∞∫
−∞

I (ω′)e iω′τdω′
e iωτdτ

which we rearrange to

p
2π

 ∞∫
−∞

I (ω′)

 1

2π

∞∫
−∞

e−i (ω′−ω)τdτ

dω′+
∞∫

−∞
I (ω′)

 1

2π

∞∫
−∞

e−i (ω′+ω)τdτ

dω′


From (0.52) we note that the terms in parentheses are delta functions, so we have

p
2π

 ∞∫
−∞

I (ω′)δ
(
ω′−ω)

dω′+
∞∫

−∞
I (ω′)δ

(
ω′+ω)

dω′


The remaining frequency integrals can then be easily performed to obtain

F

2Re

∞∫
−∞

I (ω)e−iωτdω

=p
2π [I (ω)+ I (−ω)] (8.22)

7J. Peatross and S. Bergeson, “Fourier Spectroscopy of Ultrashort Laser Pulses,” Am. J. Phys. 74,
842-845 (2006).

8This is weird since normally we take Fourier transforms on fields rather than expressions
involving intensity!
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With (8.21) and (8.22) we can write (8.20) as

F
{
Sig(τ)

}∝ 2E0δ (ω)+ I (ω)+ I (−ω) (8.23)

The Fourier transform of the measured signal is seen to contain three terms, one
of which is the power spectrum I (ω) that we are after. Fortunately, when graphed
as a function of ω (shown in Fig. 8.5), the three pieces on the right-hand side
of (8.20) do not overlap. As a reminder, the measured signal as a function of τ
looks something like that in Fig. 8.3. The oscillation frequency of the fringes
lies in the neighborhood of ω0. In summary, to obtain I (ω) using a Michelson
interferometer, 1) record Sig(τ); 2) take its Fourier transform; and 3) extract the
curve at positive frequencies.

Figure 8.5 A graphical depiction of
F {Sig(τ)}

/p
2π .

8.5 Young’s Two-Slit Setup and Spatial Coherence

In close analogy with the Michelson interferometer, which is useful for investi-
gating temporal coherence, a Young’s two-slit setup can be used to investigate
spatial coherence of quasi-monochromatic light. Thomas Young, who lived nearly
a century before Michelson, used his two-slit setup for the first conclusive demon-
stration that light propagates as a wave. The Young’s double-slit setup and the
Michelson interferometer have in common that two beams of light travel different
paths and then interfere. In the Michelson interferometer, one path is delayed
with respect to the other so that temporal effects can be studied. In the Young’s
two-slit setup, two laterally separate points of the same wave are compared as
they are sent through two slits.

Depending on the coherence of the light entering each slit, the fringe pattern
observed can exhibit good or poor visibility. Just as the Michelson interferometer
is sensitive to the spectral content of light, the Young’s two-slit setup is sensitive
to the spatial extent of the light source illuminating the two slits. For example, if
light from a distant star (restricted by a filter to a narrow spectral range) is used to
illuminate a double-slit setup, the resulting interference pattern appearing on a
subsequent screen shows good or poor fringe visibility depending on the angular
width of the star. Michelson was the first to use this type of setup to measure the
angular width of stars.

In contrast, light emerging from a single ideal point source has wavefronts
that are spatially uniform in a lateral sense (see Fig. 8.6). Such wavefronts are
said to be spatially coherent, even if the temporal coherence is not perfect (i.e.
if a range of frequencies is present). When spatially coherent light illuminates a
Young’s two-slit setup, fringes of maximum visibility are seen at a distant screen,
meaning the fringes vary between a maximum intensity and zero.

As a warmup exercise, we first consider a Young’s two-slit setup illuminated
by a single point source. Let the slits be equidistant from the point source. We
represent the fields on a subsequent screen that transmit through each slit, re-
spectively, as E0e i (kd1−ωt ) and E0e i (kd2−ωt ). The two fields are identical except for
a phase associated with the distance from each slit to a particular point on the
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Point Source

Figure 8.6 A point source produces coherent (locked phases) light. When this light
which traverses two slits and arrives at a screen it produces a fringe pattern.

screen. In close analogy with (8.1), the resulting intensity pattern on a far-away
screen is

Itot (h) = 2I0 [1+cos(kd2 −kd1)] = 2I0

[
1+cos

(
khy/D

)]
(8.24)

Notice the close similarity between this expression and the output from a Michel-
son interferometer for a plane wave (8.1). We will consider h (the separation of
the slits) to be the counterpart of τ (the delay introduced by moving a mirror in
the Michelson interferometer). To obtain the final expression in (8.24) we made
use of the following Taylor expansions:

d1
(
y
)=√(

y −h/2
)2 +D2 = D

√
1+

(
y −h/2

)2

D2
∼= D

[
1+

(
y −h/2

)2

2D2 +·· ·
]

(8.25)

and

d2
(
y
)=√(

y +h/2
)2 +D2 = D

√
1+

(
y +h/2

)2

D2
∼= D

[
1+

(
y +h/2

)2

2D2 +·· ·
]

(8.26)

These approximations are valid so long as D ≫ y and D ≫ h.
We next consider how to modify (8.24) so that it applies to the case when the

two slits are illuminated by a collection of point sources distributed over a finite
lateral extent. This situation is depicted in Fig. 8.7 and it leads to partial spatial
coherence if the phase of each point emitter fluctuates randomly. When a Young’s
two-slit setup is illuminated by an extended random source, the wavefronts at
the two slits are less correlated. This makes the fringes move around on the
screen rapidly and partially ‘wash out’ when time averaged, meaning worse fringe
visibility.

To simplify our analysis, we restrict the distribution of point sources to vary
only in the y ′ dimension.9 We assume that the light is quasi-monochromatic so

9The results can be generalized to a two-dimensional source.
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Figure 8.7 Light from an extended source is only partially coherent. Fringes are still
possible, but they exhibit less contrast.

that its frequency is approximately ω with a phase that fluctuates randomly over
time intervals much longer than the period of oscillation 2π/ω.10

The light emerging from the j th point at y ′
j travels by means of two very

narrow slits to a point y on a screen. Let E1(y ′
j ) and E2(y ′

j ) be the fields on the

screen at y , both originating from the point y ′
j , but traveling respectively through

the two different slits. We assume that these fields have the same polarization,
and we will suppress the vectorial nature of the fields. For simplicity, we assume
the two fields have the same (real) amplitude at the screen E0(y ′

j ). Thus, we write
the two fields as

E1(y ′
j ) = E0(y ′

j )e
i
{

k
[

r1(y ′
j )+d1(y)

]
−ωt+φ(y ′

j )
}

(8.27)

and

E2(y ′
j ) = E0(y ′

j )e
i
{

k
[

r2(y ′
j )+d2(y)

]
−ωt+φ(y ′

j )
}

(8.28)

We have explicitly included an arbitrary phase φ(y ′
j ) assigned to each emission

point at the source.
We now set about finding the cumulative field at y arising from the many

points indexed by the subscript j . The total field on the screen at point y is

Etot(h) =∑
j

[
E1(y ′

j )+E2(y ′
j )

]
(8.29)

Obviously, in addition to h, the total field depends on y , R , D , and k as well as on
the phase φ(y ′

j ) at each point. Nevertheless, in the end we will mainly emphasize

10Random phase fluctuations necessarily imply some frequency bandwidth, however small.
Hence the need to specify quasi-monochromatic light.
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the dependence on the slit separation h. The intensity associated with (8.29) is

Itot(h) = ϵ0c

2
|Etot(h)|2

= ϵ0c

2

[∑
j

E1(y ′
j )+E2(y ′

j )

][∑
m

E1(y ′
m)+E2(y ′

m)

]∗
= ϵ0c

2

∑
j ,m

[
E1(y ′

j )E∗
1 (y ′

m)+E2(y ′
j )E∗

2 (y ′
m)+E1(y ′

j )E∗
2 (y ′

m)+E2(y ′
j )E∗

1 (y ′
m)

]
= ϵ0c

2

∑
j ,m

∣∣∣E0(y ′
j )

∣∣∣ ∣∣E0(y ′
m)

∣∣[e
i k

(
r1(y ′

j )−r1(y ′
m )

)
+e

i k
(
r2(y ′

j )−r2(y ′
m )

)

+2Re

{
e

i k
(
r1(y ′

j )−r2(y ′
m )

)
e i k(d1(y)−d2(y))

}]
e

i
(
φ(y ′

j )−φ(y ′
m )

)
(8.30)

Thomas Young (1773–1829, English)
was born in Milverton, Somerset, and
was the oldest of ten children. By age
fourteen, he had become proficient at a
dozen different languages. As a young
adult, he studied medicine and then
went to Göttingen, Germany where he
earned a doctoral degree in physics. In
1801, he was appointed professor of
natural philosophy at the Royal Insti-
tute, but he also maintained an active
medical practice on the side. He con-
tributed to a wide variety of fields and
helped to decipher ancient Egyptian hi-
eroglyphs, including the Rosetta Stone.
He published descriptions of the heart
and arteries as well as how the eye ac-
commodates to see at different depths
and how the eye perceives color. In en-
gineering fields, Young is well known his
analysis of stresses and strains in elastic
media. Young’s double-slit experiment
gave convincing evidence of the wave
nature of light, overturning Newton’s cor-
puscular theory. Regarding this, Thomas
Young traded ideas with Augustin Fres-
nel through correspondence. (Wikipedia)

At this juncture we make a critical assumption: the phase of the emission
φ(y ′

j ) varies in time independently at every point on the source. This is sometimes
called the stochastic assumption, and it is appropriate for the emission from
thermal sources such as starlight (filtered to a narrow frequency range), a glowing
filament, or spontaneous emission from an excited gas or plasma. However, it is
not appropriate for coherent sources like lasers (more on that in appendix 8.B).

A wonderful simplification happens to (8.30) when the phase difference
φ(y ′

j )−φ(y ′
m) varies randomly. If j ̸= m, then exp{i (φ(y ′

j )−φ(y ′
m))} time-averages

to zero. On the other hand, if j = m, then the factor reduces to e0 = 1. Formally,
this is written〈

e
i
(
φ(y ′

j )−φ(y ′
m )

)〉
t
= δ j ,m ≡

{
1 if j = m,
0 if j ̸= m.

(random phase assumption) (8.31)

where δ j ,m is known as the Kronecker delta function. The time-averaged intensity
under the stochastic assumption (8.31) then reduces to

〈Itot(h)〉t =
∑

j
I (y ′

j )+∑
j

I (y ′
j )+2Re

{∑
j

I (y ′
j )e

i k
(
r1(y ′

j )−r2(y ′
j )

)
e i k(d1(y)−d2(y))

}
(8.32)

We may use (8.25) to simplify d1(y)−d2(y) ∼= hy/D. Very similarly, we may also
write r1(y ′

j )−r2(y ′
j ) ∼= hy ′

j /R . The only thing left to do is to put (8.32) into a slightly
more familiar form:

〈Itot (h)〉t =
[

2
∑

j
I (y ′

j )

][
1+Re

{
γ (h)

}]
(random phase assumption) (8.33)

We have introduced

γ (h) ≡
e−i khy

D
∑
j

I (y ′
j )e−i

khy ′j
R∑

j
I (y ′

j )
(8.34)

https://en.wikipedia.org/wiki/Thomas_Young_(scientist)
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which is known as the degree of coherence. It controls the fringe pattern seen at
the screen.

We can generalize (8.33) so that it applies to the case of a continuous distribu-
tion of light as opposed to a collection of discrete point sources. In Appendix 8.A
we show how summations in (8.33) and (8.34) become integrals over the source
intensity distribution, and we write

〈Inet (h)〉t = 2〈Ioneslit〉t
[
1+Re

{
γ(h)

}]
(random phase assumption) (8.35)

where

γ (h) ≡
e−i khy

D

∞∫
−∞

I (y ′)e−i khy ′
R d y ′

∞∫
−∞

I (y ′)d y ′
(8.36)

Here I (y ′) has units of intensity per length of source.
The factor exp

(−i khy/D
)

defines the locations of the periodic fringes on the
screen. The rest of (8.36) controls the (more interesting) depth of the fringes as
the slit separation h is varied. When the slit separation h increases, the amplitude
of γ (h) tends to diminish until the intensity at the screen becomes uniform.

When the two slits have very small separation (such that e−i khy ′
R ∼= 1) then we

have
∣∣γ (h)

∣∣= 1 and very good fringe visibility results. γ (h) dictates the degree of
spatial coherence in much the same way that γ (τ) dictates the degree of temporal
coherence. Notice the close similarity between (8.36) and (8.10).

As the slit separation h increases, the fringe visibility

V (h) = ∣∣γ (h)
∣∣ (8.37)

diminishes, eventually approaching zero (see (8.16)). In analogy to the temporal
case (see (8.13)), we can define a slit separation sufficiently large to make the
fringes at the screen ‘wash out’:

hc ≡ 2

∞∫
0

∣∣γ (h)
∣∣2 dh (8.38)

Appendix 8.A Spatial Coherence for a Continuous Spatial
Distribution

In this appendix we examine the spatial coherence of light from a continuous spa-
tial distribution (as opposed to a collection of discrete point sources) and justify
(8.36) and (8.37). We begin by replacing the summations in (8.30) with integrals
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over a continuous emission source. We make the following replacements:

∑
j

E1(y ′
j ) →

∞∫
−∞

E1(y ′)d y ′ and
∑
m

E1(y ′
m) →

∞∫
−∞

E1(y ′′)d y ′′

∑
j

E2(y ′
j ) →

∞∫
−∞

E2(y ′)d y ′ and
∑
m

E2(y ′
m) →

∞∫
−∞

E2(y ′′)d y ′′
(8.39)

Rather than deal with a time average of randomly varying phases, we will instead
work with a linear superposition of all conceivable phase factors. That is, we will
write the phase φ(y ′) as K y ′, where K is a parameter with units of inverse length,
which we allow to take on all possible real values with uniform likelihood. The
way we modify (8.31) for the continuous case is then

〈
e

i
[
φ(y ′

j )−φ(y ′
m )

]〉
t
= δ j ,m → 1

2π

∞∫
−∞

e i K (y ′−y ′′)dK = δ(y ′′− y ′) (8.40)

With the replacements in (8.39) and (8.40), (8.30) becomes

Itot(h) = ϵ0c

2

∞∫
−∞

d y ′ ∣∣E(y ′)
∣∣ ∞∫
−∞

d y ′′ ∣∣E(y ′′)
∣∣[e i k(r1(y ′)−r1(y ′′)) +e i k(r2(y ′)−r2(y ′′))

+2Re
{

e i k(d1(y)−d2(y))e i k(r1(y ′)−r2(y ′′))
}]
δ(y ′′− y ′)

(8.41)
Again, consistent with (8.25), we may write d1(y)−d2(y) ∼= hy/D and r1(y ′)−

r2(y ′) ∼= hy ′/R, and (8.41) reduces to

Itot (h) = 2

∞∫
−∞

I (y ′)d y ′+2Re

e−i khy
D

∞∫
−∞

I (y ′)e−i khy ′
R d y ′

 (8.42)

where

I (y ′) ≡ 1

2
ϵ0c

∣∣E(y ′)
∣∣2 (8.43)

For Itot to have normal units of intensity, I (y ′) must have units of intensity per
length of source, implying that E(y ′) has units of field per square root of length.
Hence,

∫ ∞
−∞ I (y ′)d y ′ is the intensity at the screen caused by the entire extended

source when only one slit is open. We see that (8.42) is equivalent to (8.35) and
(8.36).

Appendix 8.B Van Cittert-Zernike Theorem

In this appendix we avoid making the assumption of randomly varying phase.
This would be the case when the source of light is, for example, a laser. In place of
(8.41) we have
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Itot(h) ∝
∣∣∣∣∣∣

∞∫
−∞

[∣∣E(y ′)
∣∣eiφ(y ′)+i k y ′2

2R

]
e−i khy ′

2R d y ′
∣∣∣∣∣∣
2

+
∣∣∣∣∣∣

∞∫
−∞

[∣∣E(y ′)
∣∣eiφ(y ′)+i k y ′2

2R

]
ei khy ′

2R d y ′
∣∣∣∣∣∣
2

+2Reei khy
D


∞∫

−∞

[∣∣E (
y ′

)∣∣eiφ(y ′)+i k y ′2
2R

]
e−i khy ′

2R d y ′



∞∫

−∞

[∣∣E (
y ′

)∣∣eiφ(y ′)+i k y ′2
2R

]
ei khy ′

2R d y ′

∗

(8.44)

where we have employed (8.25) and (8.26) and similar expressions involving R
and y ′.

The first term on the right-hand side of (8.44) is the intensity on the screen
when the lower slit is covered. The second term is the intensity on the screen
when the upper slit is covered. The last term is the interference term, which
modifies the sum of the individual intensities when light goes through both slits.

Notice the occurrence of Fourier transforms (over position) on the quantities
inside of the square brackets. Later, when we study diffraction theory, we will
recognize these transforms as determining the strength of fields impinging on
the individual slits. This corresponds to a major difference between a spatially
coherent source and a random-phase source. With the random-phase source, the
slits are always illuminated with the same strength regardless of the separation.
However, with a coherent source, ‘beaming’ can occur such that the strength as
well as phase of the field at each slit depends on the slit separation.

A beautiful simplification occurs when the phase of the emitted light has the
following distribution:

φ(y ′) =−k y ′2

2R
(converging spherical wave) (8.45)

Equation (8.45) is not as arbitrary as it may first appear. This particular phase
is an approximation to a concave spherical wavefront converging to the center
between the two slits. This type of wavefront is created when a plane wave passes
through a lens. With the special phase (8.45), the intensity (8.44) reduces to

Itot (h) ∝ 2

∣∣∣∣∣∣
∞∫

−∞

∣∣E(y ′)
∣∣e−i khy ′

2R d y ′
∣∣∣∣∣∣
2 [

1+Re
{

e i khy
D

}]
(converging spherical wave) (8.46)

The factor ∣∣∣∣∣∣
∞∫

−∞

∣∣E(y ′)
∣∣e−i khy ′

2R d y ′
∣∣∣∣∣∣

corresponds to the field impinging on the screen and which arises from either slit,
when positioned at h/2. Let this field be denoted by |E1 (h/2)|. The field strength
when the single slit is positioned at h compared to that when it is positioned at
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zero is ∣∣∣∣E1 (h)

E1 (0)

∣∣∣∣=
∣∣∣∣∣∣∣∣∣

∞∫
−∞

∣∣E(y ′)
∣∣e−i khy ′

R d y ′

∞∫
−∞

∣∣E(y ′)
∣∣d y ′

∣∣∣∣∣∣∣∣∣
(converging spherical wave assumption) (8.47)

This looks very much like fringe visibility
∣∣γ (h)

∣∣ given by (8.37) and (8.36) except
that the magnitude of the field appears in (8.47), whereas the intensity appears in
(8.36).

This may seem rather contrived, but at least it is cute, and it is known as the
van Cittert-Zernike theorem.11 It says that the spatial coherence of an extended
source with randomly varying phase drops off with lateral slit separation in the
same way that the field pattern at the focus of a converging spherical wave would
drop off, whose field amplitude distribution is the same as the original intensity
distribution.

11M. Born and E. Wolf, Principles of Optics, 7th ed., p. 574 (Cambridge University Press, 1999).
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Exercises

Exercises for 8.2 Coherence Time and Fringe Visibility

P8.1 (a) Verify that (8.16) gives the fringe visibility.

HINT: Write γ= ∣∣γ∣∣e iφ and assume that
∣∣γ∣∣ varies slowly in comparison

to the oscillations.

(b) What is the coherence time τc of the light in P8.4?

P8.2 (a) Show that the fringe visibility of a Gaussian spectral distribution
(see Example 8.2) goes from 1 to e−π/2 = 0.21 as the round-trip delay
increases from zero to the coherence length.

(b) Derive an expression for the FWHM wavelength bandwidth∆λFWHM

in terms of the coherence length ℓc and the center wavelength λ0.

HINT: First determine ∆ωFWHM, defined to be the width of I (ω) at half
of its peak (see P7.6). To convert to a wavelength difference, use ω=
2πc
λ ⇒|∆ωFWHM| ∼= 2πc

λ0
2 ∆λFWHM.

Exercises for 8.3 Temporal Coherence of Continuous Sources

P8.3 Show that Re{γ(τ)} defined in (8.10) reduces to cos(ω0τ) in the case of
a plane wave E (t ) = E0e i (k0z−ω0t ) being sent through a Michelson inter-
ferometer. In other words, the output intensity from the interferometer
reduces to

I = 2I0 [1+cos(ω0τ)]

as you already expect.

HINT: Don’t be afraid of delta functions. After integration, the left-over
delta functions cancel.

P8.4 Light emerging from a dense hot gas has a collisionally broadened
power spectrum described by the Lorentzian function

I (ω) = I (ω0)

1+
(

ω−ω0
∆ωFWHM/2

)2

The light is sent into a Michelson interferometer. Make a graph of the
average intensity arriving to the detector as a function of τ.

HINT: See (0.56). You do not need to worry about the time average
in (8.17); I (ω0) can be thought of as already being normalized to the
average intensity.
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P8.5 (a) The spectral phase of the light in P8.4 is randomly organized. De-
scribe qualitatively how the light behaves as a function of time.

(b) Now suppose that the phase of the light is somehow neatly orga-
nized such that

E (ω) = i E (ω0)e i ωc z

i + ω−ω0
∆ωFWHM/2

Perform the inverse Fourier transform on the field and determine the
light intensity as a function of time. Make a sketch.

HINT:

∞∫
−∞

e−i ax

x +β d x =
{ −2iπe i aβ if a>0

0 if a<0

(
Imβ> 0

)
The constants I (ω0), and ∆ωFWHM will appear in the answer.

(c) Will the fringe visibility as a function of τ for the pulse in part (b)
behave differently from the visibility for the continuous light in part
(a)? Explain.

Exercises for 8.4 Fourier Spectroscopy

L8.6 (a) Use a scanning Michelson interferometer to measure the wave-
length of the ultrashort laser pulses from a mode-locked Ti:sapphire
oscillator.12 (video)

Detector

Beam
Splitter

Figure 8.8

(b) Measure the coherence length of the source by observing the dis-
tance over which the visibility diminishes. Determine the bandwidth
∆λFWHM of the source, assuming the Gaussian profile in P8.2.

(c) Use a computer to perform a fast Fourier transform (FFT) of the
signal output. For the positive frequencies, plot the laser spectrum as a
function of λ and compare with the results of (a) and (b).

(d) How do the results change if the ultrashort pulses are first stretched
in time by traversing a thick piece of glass?

Exercises for 8.5 Young’s Two-Slit Setup and Spatial Coherence

P8.7 (a) A point source with wavelength λ= 500 nm illuminates two parallel
slits separated by h = 1.0 mm. If the screen is D = 2 m away, what is
the separation between the interference peaks on the screen? Make a
sketch.

12J. Peatross and S. Bergeson, “Fourier Spectroscopy of Ultrashort Laser Pulses,” Am. J. Phys. 74,
842-845 (2006).

https://vimeo.com/717097192
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(b) A thin piece of glass with thickness d = 0.01 mm and index n = 1.5 is
placed in front of one of the slits. By how many fringes does the pattern
at the screen move?

HINT: Add∆φ to k (d2 −d1) in (8.24) , where∆φ is the phase difference
between traversing the glass and traversing an empty region of the
same thickness.

L8.8 (a) Carefully measure the separation of a double slit in the lab (h ∼
0.1 mm separation) by shining a HeNe laser (λ= 633 nm) through it
and measuring the interference peak separations on a distant wall (say,
2 m from the slits).

HINT: For better accuracy, measure across several fringes and divide.

Diffuser

Laser

Single slit
width a

Double slit
separation h

Filter

CCD
Camera

Rotating diffuser
to create phase

variation

Figure 8.9

(b) Create an extended light source with a HeNe laser using a time-
varying diffuser followed by an adjustable single slit. (The diffuser
must rotate rapidly to create random time variation of the phase at
each point as would occur automatically for a natural source such as
a star.) Place the double slit at a distance of R ≈ 100 cm after the first
slit. (Take note of the exact value of R, as you will need it for the next
problem.) Use a lens to image the interference pattern that would
have appeared on a far-away screen into a video camera. Observe
the visibility of the fringes. Adjust the width of the source with the
single slit until the visibility of the fringes disappears. After making the
source wide enough to cause the fringe pattern to degrade, measure
the single slit width a by shining a HeNe laser through it and observing
the interference pattern on the distant wall. (video)

HINT: As we will study later, a single slit of width a produces an inten-
sity pattern on a screen a distance L away described by

I (x) = Ipeaksinc2
(πa

λL
x
)

where sinc(α) ≡ sinα
α and lim

α→0

sinα
α = 1.

NOTE: It would have been nicer to vary the separation of the two slits
to determine the width of a fixed source. However, because it is hard to

https://vimeo.com/717097144
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make an adjustable double slit, we vary the size of the source until the
spatial coherence of the light matches the slit separation.

P8.9 (a) Compute hc for a uniform intensity distribution of width a using
(8.38).

(b) Use this formula to check that your measurements in L8.8 agree
with spatial coherence theory.

HINT: In your experiment hc is the double slit separation. Use your
measured R and h to calculate what the width of the single slit (i.e.
a) should have been when the fringes disappeared and compare this
calculation to your direct measurement of a.

Solution: (This is only a partial solution)

γ (h) =

a/2∫
−a/2

I0 exp
[
−i kh

(
y ′
R + y

D

)]
d y ′

a/2∫
−a/2

I0d y ′
=

e−i kh
y
D

a/2∫
−a/2

e−i kh
y ′
R d y ′

a
=

e−i kh
y
D

 e−i kh
y ′
R

−i kh
R

a/2

−a/2

a

= e−i kh
y
D

 e−i kh a/2
R −e−i kh −a/2

R

−2i kh a/2
R

= e−i kh
y
D sinc

kha

2R

Note that ∞∫
0

sin2αx

(αx)2
d x = π

2α
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True and False Questions

R26 T or F: As light enters a crystal, the Poynting vector always obeys Snell’s
law.

R27 T or F: As light enters a crystal, the k-vector obeys Snell’s law for the
extraordinary wave.

R28 T or F: In our notation (widely used), I (t ) is the Fourier transform of
I (ω).

R29 T or F: The integral of I (t ) over all t equals the integral of I (ω) over all
ω.

R30 T or F: The phase velocity of light (the speed of an individual frequency
component of the field) never exceeds the speed of light c.

R31 T or F: The group velocity of light can exceed c if absorption or amplifi-
cation takes place.

R32 T or F: A Michelson interferometer is ideal for measuring the spatial
coherence of light.

R33 T or F: A Michelson interferometer can be used to measure the spectral
intensity of light I (ω).

R34 T or F: A Michelson interferometer can be used to measure the duration
of a short laser pulse and thereby characterize its chirp.

R35 T or F: A Michelson interferometer can be used to measure the wave-
length of light.

R36 T or F: A Michelson interferometer can be used to measure the phase
of E (ω).

R37 T or F: The Fourier transform (or inverse Fourier transform if you prefer)
of I (ω) is proportional to the degree of temporal coherence.

223
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R38 T or F: The Young’s two-slit setup is ideal for measuring the temporal
coherence of light.

R39 T or F: Vertically polarized light illuminates a Young’s double-slit setup
and fringes are seen on a distant screen with good visibility. A half-wave
plate is placed in front of one of the slits so that the polarization for
that slit becomes horizontally polarized. Statement: The fringes at the
screen will shift position but maintain their good visibility.

Problems

R40 Second harmonic generation (the conversion of light with frequency
ω into light with frequency 2ω) can occur when very intense laser
light travels in a material. For energy conversion, the laser light and
the second harmonic light need to travel at the same speed in the
material. In other words, both frequencies need to have the same index
of refraction.

Unfortunately, the index of refraction is almost never the same for
different frequencies in a given material, owing to dispersion. However,
in some crystals when one frequency propagates as an ordinary wave
and the other propagates as an extraordinary wave, the two indices can
be made precisely the same by ‘tuning’ the angle of the crystal.

Consider a uniaxial KDP crystal (potassium dihydrogen phosphate)
with ordinary index no and extraordinary index

none√
n2

o sin2θ+n2
e cos2θ

where θ is the angle made with the optic axis. At the frequency of a
ruby laser, KDP has indices no (ω) = 1.505 and ne (ω) = 1.465. At the
frequency of the second harmonic, the indices are no (2ω) = 1.534 and
ne (2ω) = 1.487.

In order to make the indices at the two frequencies the same, decide
which frequency should propagate as an ordinary wave and which
should propagate as an extraordinary one. What angle θ will make the
indices the same?

Horizontal
Polarizer

Vertical
Polarizer

Figure 8.10

R41 (a) Horizontally polarized light travels through a horizontal polarizer
and then a vertical polarizer as shown. What is the Jones vector of the
transmitted field?

(b) Now a polarizer at 45◦ is inserted between the two polarizers in
the system described in part (a). What is the Jones vector of the trans-
mitted field? How does the final intensity compare to initial intensity?

NOTE: The polarizer matrix is 1
2

[
1 1
1 1

]
.



225

(c) Now a quarter-wave plate with a fast-axis angle at 45◦ is inserted
between the two polarizers (instead of the polarizer in part (b)). What
is the Jones vector of the transmitted field? How does the final in-
tensity compare to initial intensity? NOTE: The wave-plate matrix is

1
2

[
1+ i 1− i
1− i 1+ i

]
.

R42 (a) Derive the Jones matrix for a half-wave plate with its fast axis making
an arbitrary angle θ with the x-axis.

HINT: Project an arbitrary polarization with Ex and Ey onto the fast
and slow axes of the wave plate. Shift the slow axis phase by π, and then
project the field components back onto the horizontal and vertical axes.
The answer is [

cos2θ− sin2θ 2sinθcosθ
2sinθcosθ sin2θ−cos2θ

]

Fast axis

y-axis

x-axis Transmission Axis 

Figure 8.11 Polarizing Elements

(b) We desire to create a variable attenuator for a polarized laser beam
using a half-wave plate and a polarizer aligned to the initial horizontal
polarization of a beam (see Fig. 8.11). What is the ratio of the intensity
exiting the polarizer to the incoming intensity as a function of θ?

R43 (a) What is the spectral content (i.e. I (ω)) of a square laser pulse

E (t ) =
{

E0e−iω0t , |t | ≤ τ/2
0 , |t | > τ/2

Make a sketch of I (ω), indicating the location of the first zeros.

(b) What is the temporal shape (i.e. I (t )) of a light pulse with frequency
content

E (ω) =
{

E0 , |ω−ω0| ≤∆ω/2
0 , |ω−ω0| >∆ω/2

where in this case E0 has units of E-field per frequency. Make a sketch
of I (t ), indicating the location of the first zeros.

(c) If E (ω) is given ( not necessarily the same function as above), and
the light passes through a material with index n (ω) and thickness ℓ,
how would you find E (t ) after exiting the material? Please set up the
integral without performing it.

R44 (a) Prove Parseval’s theorem:
∞∫

−∞
|E (ω)|2 dω=

∞∫
−∞

|E (t )|2 d t . HINT: δ
(
t ′− t

)= 1
2π

∞∫
−∞

e iω(t ′−t)dω

(b) Suppose that you have a detector that measures the total energy
in a pulse of light, say 1 mJ directed onto an area of 0.01 cm2. Next
you measure the spectrum of light and find it to have a width of ∆λ=
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50 nm, centered at λ0 = 800 nm. Assume that the light has a Gaussian
frequency profile

I (ω) = I (ω0)e−
(ω−ω0

∆ω

)2

Find the value and correct units for I (ω0).

HINT: Use as an approximate value ∆ω∼= 2πc
λ2

0
|∆λ|. Also

∞∫
−∞

e−Ax2+B x+C d x =
√
π

A
eB 2/4A+C Re{A} > 0

R45 Continuous light entering a Michelson interferometer has a spectrum
described by

I (ω) =
{

I0 , |ω−ω0| ≤∆ω/2
0 , |ω−ω0| >∆ω/2

The Michelson interferometer uses a 50:50 beam splitter. The emerging
light produces a signal Sig(t ,τ) ∝ 1+Reγ (τ), where degree of coher-
ence is

γ(τ) =
∞∫

−∞
I (ω)e−iωτdω

/ ∞∫
−∞

I (ω)dω

Find the fringe visibility V ≡ (Imax − Imin)/(Imax + Imin) as a function of τ
(i.e. the round-trip delay due to moving one of the mirrors).

R46 A chirped Gaussian pulse has the form

E (t ) = E0(
1+Φ2

) 1
4

e
− t2(1+iΦ)

2T 2(1+Φ2) e−iω0t+i 1
2 tan−1Φ

at a certain location in space and with a time origin chosen to coincide
with the peak of the pulse. Φ is a parameter characterizing the amount
of chirp.

(a) Sketch the real part of the waveform for Φ= 0 and Φ=p
3.

(b) Find E (ω) and I (ω). HINT: See integral provided in R44(b).

(c) Compute the degree of coherence γ(τ). How does it depend on Φ?

R47 A diffuse source of light impinges on a Young’s double slit (with slit
separation h) positioned a distance R from the source. A screen is
placed a distance D following the slit. The degree of coherence is given
by

γ (h) ≡
e−i khy

D

∞∫
−∞

I (y ′)e−i khy ′
R d y ′

∞∫
−∞

I (y ′)d y ′

where y (unprimed) is the position on the screen. The source has an
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emission distribution with the form I (y ′) = (
I0/∆y ′)e−y ′2/∆y ′2

.

(a) Compute the function γ(h). HINT: See integral provided in R44(b).

(b) The intensity on the screen oscillates as a function of y . As h grows
wider, the amplitude of oscillations decreases. How wide must the slit
separation h become (in terms of R , k, and ∆y ′) to reduce the visibility
to

V ≡ Imax − Imin

Imax + Imin

= 1

3

(c) Sketch the intensity at the screen I ∝ 1+Reγ(h) when the visibility
is 1/3.

Selected Answers

R40: 51.12◦.

R41: (b) 1/4, (c) 1/2.

1. R44: (b) 3.8×10−16J/
(
cm2 · s−1

)
.

R46: (b) partial: E (ω) = T E0e−T 2 (ω−ω0)2

2 (1−iΦ).





Chapter 9

Light as Rays

So far in our study of optics, we have described light in terms of waves, which sat-
isfy Maxwell’s equations. However, as you are probably aware, in many situations
light can be thought of as rays pointing along the direction of wave propagation. A
ray picture is useful when one is interested in the macroscopic flow of light energy,
but rays fail to reveal fine details, in particular wave and diffraction phenomena.
For example, simple ray theory suggests that a lens can focus light down to a point.
However, if a beam of light were concentrated onto a true point, the intensity
would be infinite! Nevertheless, ray theory is useful for predicting where a focus
occurs. It is also useful for describing imaging properties of optical systems (e.g.
lenses and mirrors).

Beginning in section 9.3 we study the details of ray theory and the imaging
properties of optical systems. First, however, we examine the justification for ray
theory starting from Maxwell’s equations. In the short-wavelength limit, Maxwell’s
equations give rise to the eikonal equation, which governs the direction of rays
in a medium with an index of refraction that varies with position. The German
word ‘eikonal’ comes from the Greek ‘ϵικων’ from which the modern word ‘icon’
derives. The eikonal equation therefore has a descriptive title since it controls the
formation of images. The eikonal equation provides an adequate description as
long as the features of interest are large compared to a wavelength.

The eikonal equation describes the direction of ray propagation, even in com-
plicated situations such as desert mirages where air is heated near the ground and
has a different index than the air farther from the ground. Rays of light from the
sky that initially are directed toward the ground can be bent such that they travel
parallel to or even up from the ground, owing to the inhomogeneous refractive
index. The eikonal equation can also be used to deduce Fermat’s principle, which
in short says that light travels from point A to point B following a path that takes
the minimum time. This principle can be used, for example, to ‘derive’ Snell’s law.
Fermat asserted this principle more than a century before Maxwell’s equations
were known, but it is nice to give justification retroactively using the modern
perspective.

Much of this chapter is devoted to the propagation of rays through optical

229



230 Chapter 9 Light as Rays

systems composed of lenses and/or curved mirrors in the context of paraxial
ray theory. The paraxial approximation restricts rays to travel nearly parallel to
the axis of such systems. We consider the effects of three basic optical elements
acting on paraxial rays: 1) Free propagation through a distance d in a uniform
medium; a ray may move farther away from (or closer to) the optical axis, as it
travels. 2) Reflection from a curved spherical mirror, which changes a ray’s angle
with respect to the optical axis. 3) Transmission through a spherical interface
between two materials with differing refractive indices. The effects of each of
these basic elements on a ray of light can be represented as a 2×2 matrix, which
can be multiplied together to construct more complex imaging systems (such as
a lens or a series of lenses and curved mirrors).

Sir Isaac Newton (1643–1727, En-
glish) was born in Lincolnshire, England
three months after the death of his fa-
ther who was a farmer. Newton spent
much of his childhood with his maternal
grandmother, after his mother remarried.
(Newton did not like his stepfather.) In
his teenage years, Newton’s mother
tried to persuade him to take up farming,
but his love for education won out. He
became the top-ranked student at his
school and was admitted into Trinity Col-
lege, Cambridge at age 18. Newton was
influenced by the works of Descartes,
Copernicus, Galileo, and Kepler. Upon
graduation four years later, the univer-
sity closed for two years because of a
plague. Newton’s return to farm life coin-
cided with a remarkable period when he
first developed ideas on calculus, gravita-
tion, and optics. Newton later returned to
Cambridge where he spent his extraor-
dinarily prolific career and became the
first scientist to be knighted. In optics,
Newton advanced the ray theory of light
and image formation. He wrote a land-
mark textbook on the subject. He also
showed that ‘white’ light is comprised
of many colors and that the amount of
refraction depends on color. He built the
first reflecting telescope, which avoids
chromatic aberration. Newton advo-
cated against the wave theory of light in
favor of his ‘corpuscular’ theory. (Imag-
ining that Newton foresaw the quantized
nature of light energy gives too much
credit!) (Wikipedia)

We will study image formation in the context of the paraxial approximation,
which in the case of a curved mirror or a thin lens gives rise to the familiar formula

1

f
= 1

do
+ 1

di
(9.1)

Even a complicated multi-element optical system obeys (9.1) if do and di are
measured from principal planes rather than the single plane of, for example, a
thin lens.

Paraxial ray theory can also be used to study the stability of laser cavities. The
formalism predicts whether a ray, after many round trips in the cavity, remains
near the optical axis (trapped and therefore stable) or if it drifts endlessly away
from the axis of the cavity on successive round trips.

In appendix 9.A we address deviations from the paraxial ray theory known
as aberrations. We also comment on ray-tracing techniques, used for designing
optical systems that minimize such aberrations.

9.1 The Eikonal Equation

For simplicity, consider light consisting of only a single frequency ω. The wave
equation (2.13) for an isotropic medium with a real refractive index may be written
as

∇2E(r, t )+ [n (r)]2ω2

c2 E (r, t ) = 0 (9.2)

where we have already performed the time differentiation on the assumed single-
frequency time dependence e−iωt . Although in chapter 2 we considered solutions
to the wave equation in a homogeneous material, the wave equation remains valid
when the index of refraction varies throughout space (i.e. if n (r) is an arbitrary
function of r). In this case, the usual plane-wave solutions no longer satisfy the
wave equation.

As a trial solution for (9.2), we take

E(r, t ) = E0 (r)e i [kvacR(r)−ωt ] (9.3)

https://en.wikipedia.org/wiki/Isaac_Newton
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where

kvac = ω

c
= 2π

λvac
(9.4)

Here R (r) is a real scalar function (which depends on position) having the dimen-
sion of length. By taking R (r) to be real, there is no absorption or amplification.
Even though the trial solution (9.3) looks somewhat like a plane wave,1 the func-
tion R (r) accommodates wavefronts that can be curved or distorted as depicted
in Fig. 9.1. At any given instant t , the phase of the curved surfaces described by
R (r) = constant can be interpreted as wavefronts. The wavefronts travel in the
direction for which R (r) varies the fastest. This direction is aligned with ∇R (r),
which lies in the direction perpendicular to surfaces of constant phase.

Figure 9.1 Wave fronts (i.e. sur-
faces of constant phase given by
R(r)) distributed throughout space
in the presence of a spatially inho-
mogeneous refractive index. The
gradient of R gives the direction of
travel for a wavefront.

The substitution of the trial solution (9.3) into the wave equation (9.2) gives

1

k2
vac

∇2
[

E0 (r)e i kvacR(r)
]
+ [n (r)]2 E0 (r)e i kvacR(r) = 0 (9.5)

where we have divided each term by e−iωt .

Computing the Laplacian in (9.5)

The gradient of the x component of the field is

∇
[

E0x (r)e i kvacR(r)
]
= [∇E0x (r)]e i kvacR(r) + i kvacE0x (r) [∇R (r)]e i kvacR(r)

The Laplacian of the x component is

∇·∇
[

E0x (r)e i kvacR(r)
]
= {∇2E0x (r)−k2

vacE0x (r) [∇R (r)] · [∇R (r)]

+i kvacE0x (r)
[∇2R (r)

]+2i kvac [∇E0x (r)] · [∇R (r)]
}

e i kvacR(r)

Upon combining the result for each vector component of E0 (r), the required spatial
derivative can be written as

∇2
[

E0 (r)e i kvacR(r)
]
= (∇2E0 (r)−k2

vacE0 (r) [∇R (r)] · [∇R (r)]+ i kvacE0 (r)
[∇2R (r)

]
+2i kvac

{
x̂ [∇E0x (r)] · [∇R (r)]+ ŷ

[∇E0y (r)
] · [∇R (r)]

+ ẑ [∇E0z (r)] · [∇R (r)]})e i kvacR(r)

After performing the Laplacian and after some rearranging, (9.5) becomes

[∇R(r) ·∇R(r)− [n(r)]2]E0(r) = ∇2E0(r)

k2
vac

+ i

kvac
∇2R (r)+ 2i

kvac
x̂∇E0x (r) ·∇R (r)

+ 2i

kvac
ŷ∇E0y (r) ·∇R (r)+ ẑ

2i

kvac
∇E0z (r) ·∇R (r)

(9.6)

1If the index is spatially independent (i.e. n (r) → n), then (9.3) reduces to the usual plane-wave
solution of the wave equation. In this case, we have R (r) = k · r/kvac and the field amplitude
becomes constant (i.e. E0 (r) → E0).
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Don’t be afraid; at this point we are ready to make an important approxima-
tion. We take the limit of a very short wavelength (i.e. 1/kvac =λvac/2π→ 0), and
the entire right-hand side of (9.6) vanishes. (Thank goodness!) With it we lose the
effects of diffraction so that only macroscopic features are relevant. The equation
also knows nothing about surface reflections at abrupt index changes.

Our wave equation has been simplified to

[∇R (r)] · [∇R (r)] = [n (r)]2 (9.7)

Written another way, this equation is

∇R (r) = n (r) ŝ (r) (9.8)

where ŝ is a unit vector pointing in the direction ∇R (r), the direction normal to
wavefront surfaces. Equation (9.8) is called the eikonal equation.2

y

h

h/2

h/4

x

Figure 9.2 Depiction of possible
light ray paths in a region with
varying index.

Example 9.1

Suppose that a region of air above the desert on a hot day has an index of refraction
that varies with height y according to n

(
y
)= n0

√
1+ y2/h2. Verify that R

(
x, y

)=
n0

(
x ± y2/2h

)
is a solution to the eikonal equation. (See problem P9.1 for a more

general solution.)

Solution: The gradient of our trial solution gives

∇R
(
x, y

)= n0
(
x̂± ŷy/h

)
Substituting this into (9.7) gives

∇R ·∇R = n0
(
x̂± ŷy/h

) ·n0
(
x̂± ŷy/h

)= n2
0

(
1+ y2/h2)= [

n
(
y
)]2

which confirms that it is a solution. The direction of light propagation is

ŝ
(
y
)≡ ∇R

|∇R| =
n0

(
x̂± ŷy/h

)
n0

√
1+ y2/h2

= x̂± ŷy/h√
1+ y2/h2

Computed at various heights, the direction for rays turns out to be

ŝ (h) = x̂± ŷp
2

ŝ (h/2) = x̂± ŷ/2p
5/4

ŝ (h/4) = x̂± ŷ/4p
17/16

These are represented in Fig. 9.2. In a desert mirage, light from the sky can appear
to come from a lower position. We can determine a path for the rays by setting
d y/d x equal to the slope of ŝ:

d y

d x
=± y

h
⇒ y = y0e±(x−x0)/h

2M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 3.1.1 (Cambridge University Press, 1999).
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It can be shown that the Poynting vector is directed along ŝ (see P9.2). In other
words, the direction of ŝ specifies the direction of energy flow. The unit vector ŝ
at each location in space points perpendicular to the wavefronts and indicates
the direction that the waves travel as seen in Fig. 9.1. A collection of vectors ŝ
distributed throughout space are called rays.

In retrospect, we might have jumped straight to (9.8) without going through
the above derivation. After all, we know that each part of a wavefront advances
in the direction of its gradient ∇R (r) (i.e. in the direction that R (r) varies most
rapidly). We also know that each part of a wavefront defined by R (r) = constant
travels at speed c/n (r). The slower a given part of the wavefront advances, the
more rapidly R (r) changes with position r and the closer the contours of constant
phase. It follows that ∇R (r) must be proportional to n (r) since ∇R (r) denotes the
rate of change in R (r).

Pierre de Fermat (1601–1665, French)
was born in Beaumont-de-Lomagne,
France to a wealthy merchant family.
He attended the University of Toulouse
before moving to Bordeaux in the late
1620s where Fermat distinguished him-
self as a mathematician. Fermat was
proficient in many languages and went
on to obtain a law degree in 1631 from
the University of Orleans. He continued
his study of mathematics as a hobby
throughout his life. He corresponded
with a number of notable mathemati-
cians, and through his letters made
notable contributions to analytic geom-
etry, probability theory, and number the-
ory. He was often quite secretive about
the methods used to obtain his results.
Mathematicians suspect that Fermat
didn’t actually prove his famous last the-
orem, which was not able to be verified
until the 1990’s. Fermat was the first to
assert that the path taken by a beam of
light is the one that can be traveled in
the least amount of time. (Wikipedia)

9.2 Fermat’s Principle

As we have seen, the eikonal equation (9.8) governs the path that rays follow as
they traverse a region of space, where the index varies with position. Another way
of deducing the correct path of rays is via Fermat’s principle.3 Fermat’s principle
says that if a ray happens to travel through both points A and B, it will follow a
path between them that takes the least time.

Derivation of Fermat’s Principle from the Eikonal Equation

We begin by taking the curl of (9.8) to obtain4

∇× [n (r) ŝ (r)] =∇× [∇R (r)] = 0 (9.9)

This can be integrated over an open surface of area A to give∫
A

∇× [n (r) ŝ (r)]d a =
∮
C

n (r) ŝ (r) ·dℓ= 0 (9.10)

We have applied Stokes’ theorem (0.12) to convert the area integral into a path
integral around the perimeter contour C .

Equation (9.10) states that the integration of nŝ ·dℓ around a closed loop is always
zero. If we consider a closed loop comprised of a path from point A to point B and
then a different path from B back to A again, the integrals for the two legs always
cancel, even while holding one path fixed while varying the other. This means

B∫
A

nŝ ·dℓ is independent of path from A to B. (9.11)

Now consider a path from A to B that is parallel to ŝ, as depicted in Fig. 9.3. In
this case, the cosine in the dot product is always one. If we choose some other

3M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 3.3.2 (Cambridge University Press, 1999).
4The curl of a gradient is identically zero for any function.

https://en.wikipedia.org/wiki/Pierre_de_Fermat
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path that connects A and B, the cosine associated with the dot product is less than
one at most points along that path, whereas the result of the integral is the same.
Therefore, if we artificially remove the dot product from the integral (i.e. exclude
the cosine factor), the result of the integral will exceed the true value unless the
path chosen follows the direction of ŝ (i.e. the path that corresponds to the one
that light rays actually follow).

In mathematical form, this argument can be expressed as

B∫
A

nŝ ·dℓ= min


B∫

A

ndℓ

 (9.12)

The integral on the right is called the optical path length (OPL) between points A
and B:

OPL|BA ≡
B∫

A

ndℓ (9.13)

The conclusion is that the true path that light follows between two points (i.e.
the one that stays parallel to ŝ) is the one with the shortest optical path length.
The index n may vary with position and therefore can be different for each of the
incremental distances dℓ.

A

B

Figure 9.3 A ray of light leaving
point A arriving at B.

Fermat’s principle is usually stated in terms of the time it takes light to travel
between points. The travel time ∆t depends not only on the path taken by the
light but also on the velocity of the light v (r), which varies spatially with the
refractive index:

∆t |BA =
B∫

A

dℓ

v(r)
=

B∫
A

dℓ

c/n(r)
= OPL|BA

c
(9.14)

To find the correct path for the light ray that leaves point A and crosses point
B, we need only minimize the optical path length between the two points (pro-
portional to travel time). The optical path length is not the actual distance that
the light travels; it is proportional to the number of wavelengths that fit into that
distance (see (2.24)). Thus, as the wavelength shortens due to a higher index of
refraction, the optical path length increases. The correct ray traveling from A to
B does not necessarily follow a straight line but can follow a complicated curve
according to how the index varies.

An imaging situation occurs when many paths from point A to point B have
the same optical path length. An example of this occurs when a lens causes an
image to form. In this case all rays leaving point A (on an object) and traveling
through the system to point B (on the image) experience equal optical path
lengths. Although the ray traveling through the center of the lens depicted in
Fig. 9.4 has a shorter geometric path length, it goes through more material so that
the optical path length is the same as for the outer rays.

A B

Figure 9.4 Rays of light leaving
point A with the same optical path
length to B.

To summarize Fermat’s principle,5 of the many rays that might emanate from

5The minimization of (9.14) does not give the correct path in anisotropic media such as crystals
where n depends on the direction of a ray as well as on its location (see P9.5).



9.2 Fermat’s Principle 235

a point A, the ray that crosses a second point B is the one that follows the shortest
optical path length. If many rays tie for having the shortest optical path, we say
that an image of point A forms at point B.

A

B

Figure 9.5 Rays of light leaving
point A; not all of them will tra-
verse point B.

Example 9.2

Use Fermat’s principle to derive Snell’s law.

Solution: Consider the many rays of light that leave point A seen in Fig. 9.5. Only
one of the rays passes through point B. Within each medium we expect the light to
travel in a straight line since the index is uniform. However, at the boundary we
must allow for bending since the index changes.

The optical path length between points A and B may be written

OPL = ni

√
x2

i + y2
i +nt

√
x2

t + y2
t (9.15)

We need to minimize this optical path length to find the correct one according to
Fermat’s principle.

Since points A and B are fixed, we may regard xi and xt as constants. The distances
yi and yt are not constants although the combination

ytot = yi + yt (9.16)

is constant. Thus, we may rewrite (9.15) as

OPL
(
yi

)= ni

√
x2

i + y2
i +nt

√
x2

t +
(
ytot − yi

)2 (9.17)

where the only variable is yi .

We now minimize the optical path length by taking the derivative and setting it
equal to zero:

d (OPL)

d yi
= ni

yi√
x2

i + y2
i

+nt
−(

ytot − yi
)√

x2
t +

(
ytot − yi

)2
= 0 (9.18)

Notice that
sinθi = yi√

x2
i + y2

i

and sinθt = yt√
x2

t + y2
t

(9.19)

With these substitutions, (9.18) reduces to

ni sinθi = nt sinθt (9.20)

which is the familiar Snell’s law.
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Example 9.3

Use Fermat’s principle to derive the equation of curvature for a reflective surface
that causes all rays leaving one point to image to another. Do the calculation in
two dimensions rather than in three.6

Solution: We adopt the convention that the origin is halfway between the points,
which are separated by a distance 2a, as shown in Fig. 9.6. If the points are to image
to each other, Fermat’s principle requires that the total path length be a constant;
call it b. If the total path from the ‘object’ point to the ‘image’ point includes a
reflection from an arbitrary point

(
x, y

)
, we may write constant path length as√

(x +a)2 + y2 +
√

(x −a)2 + y2 = b (9.21)

Figure 9.6

To get (9.21) into a more recognizable form, we isolate the first square root and
square both sides of the equation, which gives

(x +a)2 + y2 = b2 + (x −a)2 + y2 −2b
√

(x −a)2 + y2

After squaring the two binomial terms, some nice cancelations occur, and we get

4ax −b2 =−2b
√

(x −a)2 + y2

which we square again to obtain

16a2x2 −8ab2x +b4 = 4b2 (
x2 −2ax +a2 + y2)

After some cancellations and regrouping this becomes(
16a2 −4b2)x2 −4b2 y2 = 4a2b2 −b4

Finally, we divide both sides by the term on the right to obtain the (hopefully)
familiar form of an ellipse

x2(
b2

4

) + y2(
b2

4 −a2
) = 1 (9.22)

9.3 Paraxial Rays and ABCD Matrices

We now turn our attention to the effects of curved mirrors and lenses on rays of
light. Keep in mind that when describing light as a collection of rays rather than
as waves, the results can only describe features that are macroscopic compared to
a wavelength. The rays of light at each location in space describe approximately
the direction of travel of the wavefronts at that location. Since the wavelength of
visible light is extraordinarily small compared to the macroscopic features that we

6This configuration is used to direct flash lamp energy into a laser amplifier rod. One ‘point’ in
Fig. 9.6 represents the end of an amplifier rod while the other represents the end of a thin flash-lamp
tube.
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perceive in our day-to-day world, the ray approximation is often a very good one.
This is the reason that ray optics was developed long before light was understood
as a wave.

We consider ray theory within the paraxial approximation, meaning that
we restrict our attention to rays that are near and almost parallel to an optical
axis of a system, say the z-axis. It is within this approximation that the familiar
imaging properties of lenses occur. An image occurs when all rays from a point
on an object converge to a corresponding point on what is referred to as the
image. To the extent that the paraxial approximation is violated, the clarity of
an image can suffer, and we say that there are aberrations present. The field
of optical engineering is often concerned with minimizing aberrations in cases
where the paraxial approximation is not strictly followed. This is done so that, for
example, a camera can take pictures of objects that occupy a fairly wide angular
field of view, where rays violate the paraxial approximation. Optical systems are
typically engineered using the science of ray tracing, which is described briefly in
section 9.A.

As we develop paraxial ray theory, we should remember that rays impinging
on devices such as lenses or curved mirrors should strike the optical component
at near normal incidence. To quantify this statement, the paraxial approximation
is valid to the extent that

sinθ ∼= θ (9.23)

is a good approximation, and similarly

tanθ ∼= θ (9.24)

Here, the angle θ (in radians) represents the angle that a particular ray makes
with respect to the optical axis. There is an important mathematical reason for
this approximation. The sine is a nonlinear function, but at small angles it is
approximately linear and can be represented by its argument. This linearity
greatly simplifies the analysis since it reduces the problem to linear algebra.
Conveniently, we will be able to keep track of imaging effects with a 2×2 matrix
formalism.

Figure 9.7 The behavior of a ray as
light traverses a distance d .

Consider a ray propagating in the y–z plane where the optical axis is in the z-
direction. Let us specify a ray at position z1 by two coordinates: the displacement
from the axis y1 and the orientation angle θ1 (see Fig. 9.7). If the index is uniform
everywhere, the ray travels along a straight path. It is straightforward to predict the
coordinates of the same ray downstream, say at z2. First, since the ray continues
in the same direction, we have

θ2 = θ1 (9.25)

By referring to Fig. 9.7 we can write y2 in terms of y1 and θ1:

y2 = y1 +d tanθ1 (9.26)

where d ≡ z2 − z1. Equation (9.26) is nonlinear in θ1, but within the paraxial
approximation it becomes simply

y2 = y1 +θ1d (9.27)
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Equations (9.25) and (9.27) describe a linear transformation, which in matrix
notation may be written as[

y2

θ2

]
=

[
1 d
0 1

][
y1

θ1

]
ABCD matrix for propagation

through a distance d
(9.28)

Here, the vectors in this equation specify the essential information about the ray
before and after traversing the distance d , and the matrix describes the effect of
traversing the distance. This type of matrix is called an ABCD matrix;7 sometimes
physicists are not very inventive with names.

Example 9.4

Let the distance d be subdivided into two distances, a and b, such that d = a +
b. Show that an application of the ABCD matrix for distance a followed by an
application of the ABCD matrix for b renders same result as an application of the
ABCD matrix for distance d .

Solution: Individually, the effects of propagation through a and through b are[
ymid

θmid

]
=

[
1 a
0 1

][
y1

θ1

]
and

[
y2

θ2

]
=

[
1 b
0 1

][
ymid

θmid

]
(9.29)

where the subscript “mid” refers to the ray in the middle position after traversing
the distance a. If we combine the equations, we get

[
y2

θ2

]
=

[
1 b
0 1

][
1 a
0 1

][
y1

θ1

]
(9.30)

which is in agreement with (9.28) since the ABCD matrix for both displacements is[
A B
C D

]
=

[
1 b
0 1

][
1 a
0 1

]
=

[
1 a +b
0 1

]
(9.31)

9.4 Reflection and Refraction at Curved Surfaces

We next consider the effect of reflection from a spherical surface as depicted in
Fig. 9.8. We consider only the act of reflection without considering propagation
before or after the reflection takes place. Thus, the incident and reflected rays
in the figure are symbolic only of the direction of propagation before and after
reflection; they do not indicate any amount of travel. We immediately write

y2 = y1 (9.32)

since the ray has no chance to go anywhere.

7P. W. Milonni and J. H. Eberly, Lasers, Sect. 14.2 (New York: Wiley, 1988).
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We adopt the widely used convention that, upon reflection, the positive z-
direction is reoriented so that we consider the rays still to travel in the positive
z sense. An easy way to remember this is that the positive z direction is always
taken to be down stream of where the light is headed. Notice that in Fig. 9.8, the
reflected ray approaches the z-axis. In this case θ2 is a negative angle (as opposed
to θ1 which is drawn as a positive angle) and is equal to

θ2 =− (θ1 +2θi ) (9.33)

where θi is the angle of incidence with respect to the normal to the spherical
mirror surface. By the law of reflection, the incident and reflected ray both occur
at an angle θi , referenced to the surface normal. The surface normal points
towards the center of curvature of the mirror surface, which we assume is on the
z-axis a distance R away. By convention, the radius of curvature R is positive if
the mirror surface is concave and negative if the mirror surface is convex.

Figure 9.8 A ray depicted in the
act of reflection from a spherical
surface.

Elimination of θi from (9.33) in favor of θ1 and y1

By inspection of Fig. 9.8 we can write

y1

R
= sinφ∼=φ (9.34)

where we have applied the paraxial approximation (9.23). (The angles in Fig. 9.8
are exaggerated. In fact, when φ is small enough for (9.34) to hold, we may also
neglect the small distance δ.) By inspection of the geometry, we also have

φ= θ1 +θi (9.35)

and when this is combined with (9.34), we get

θi = y1

R
−θ1 (9.36)

With this we are able to put (9.33) into a useful linear form:

θ2 =− 2

R
y1 +θ1 (9.37)

Equations (9.32) and (9.37) describe a linear transformation that can be con-
cisely formulated as [

y2

θ2

]
=

[
1 0

−2/R 1

][
y1

θ1

]
ABCD matrix for a curved mirror(9.38)

The ABCD matrix in this transformation describes the act of reflection from a
concave mirror with radius of curvature R. As noted, the radius R is negative
when the mirror is convex.

The final basic element that we shall consider is a spherical interface between
two materials with indices ni and nt (see Fig. 9.9). This has an effect similar to
that of the curved mirror, which changes the direction of a ray without altering
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its distance y1 from the optical axis. Please note that here the radius of curvature
is considered to be positive for a convex surface (opposite convention from that
of the mirror). In this way, if the lower index is on the left, a positive radius R for
the interface tends to deflect rays towards the axis just as a positive radius for a
mirror does. Again, we are interested only in the act of transmission without any
travel before or after the interface. As before, (9.32) applies (i.e. y2 = y1).

Figure 9.9 A ray depicted in the
act of transmission at a curved
material interface.

At the interface, the rays obey Snell’s law, which in the paraxial approximations
is written

niθi = ntθt (9.39)

The angles θi and θt are referenced from the surface normal, as seen in Fig. 9.9.

Substituting θ1, θ2 and y1 into Snell’s Law

By inspection of Fig. 9.9, we have

θi = θ1 +φ (9.40)

and
θt = θ2 +φ (9.41)

where φ is the angle that the surface normal makes with the z-axis. As before (see
(9.34)), within the paraxial approximation we may write

φ∼= y1/R

When this is used in (9.40) and (9.41), which are substituted into (9.39), Snell’s law
becomes

θ2 =
(

ni

nt
−1

)
y1

R
+ ni

nt
θ1 (9.42)

The compact matrix form of (9.32) and (9.42) is written[
y2

θ2

]
=

[
1 0

(ni /nt −1)/R ni /nt

][
y1

θ1

]
(ABCD matrix for a curved interface) (9.43)

Distance within a material, ex-
cluding interfaces[

1 d
0 1

]
Window, starting and stopping in
air [

1 d /n
0 1

]
Thin lens or Mirror[

1 0
−1

/
f 1

]
Thin Lens: 1

f = (n −1)
(

1
R1

− 1
R2

)
Mirror: 1

f = 2
R

Thick lens 1− d
R1

(
1− 1

n

)
d
n

−(n−1)

(
1

R1
− 1

R2

)
+ d

R1R2

(
2−n− 1

n

)
1+ d

R2

(
1− 1

n

)


Table 9.1 Summary of ABCD matri-
ces for common optical elements.

9.5 ABCD Matrices for Combined Optical Elements

To summarize the previous two sections, we have developed ABCD matrices for
three basic elements: 1) propagation through a region of uniform index (9.28),
2) reflection from a curved mirror (9.38), and 3) transmission through a curved
interface between regions with different indices (9.43). All other ABCD matrices
that we will use are composites of these three. For example, one can construct the
ABCD matrix for a lens by using two matrices like those in (9.43) to represent the
entering and exiting surfaces of the lens. A distance matrix (9.28) can be inserted
to account for the thickness of the lens. It is left as an exercise to derive the ABCD
matrix for a thick lens (see P9.7).
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Example 9.5

Derive the ABCD matrix for a thin lens, where the thickness between the two lens
surfaces is ignored. (See P 9.7 for the more general case of a thick lens.)

Solution: A thin lens is depicted in Fig. 9.10. R1 is the radius of curvature for the
first surface (which is positive if convex as drawn), and R2 is the radius of curvature
for the second surface (which is negative as drawn).

We take the index outside of the lens to be unity while that of the lens material to
be n. We apply the ABCD matrix (9.43) in sequence, once for entering the lens and
once for exiting:[

A B
C D

]
=

[
1 0

1
R2

(n −1) n

][
1 0

1
R1

( 1
n −1

) 1
n

]

=
[

1 0

− (n −1)
(

1
R1

− 1
R2

)
1

] ABCD matrix for a thin lens(9.44)

The matrix for the first interface is written on the right, where it operates first on
an incoming ray vector. In this case, ni = 1 and nt = n. The matrix for the second
surface is written on the left so that it operates afterwards. For the second surface,
ni = n and nt = 1.

Figure 9.10 Thin lens.

Notice the close similarity between the ABCD matrix for a thin lens (9.44) and
the ABCD matrix for a curved mirror (9.38). The ABCD matrix for either the thin
lens or the mirror can be written as[

A B
C D

]
=

[
1 0

−1/ f 1

]
(9.45)

where in the case of the thin lens the focal length f is given by lens maker’s formula

1

f
= (n −1)

(
1

R1
− 1

R2

)
(focal length of thin lens) (9.46)

and in the case of a curved mirror, the focal length is

f = R/2 (focal length for a curved mirror) (9.47)

The reason for calling f the focal length will become apparent later. Table 9.1
gives a summary of ABCD matrices of common optical elements.

Example 9.6

Derive the ABCD matrix for a window with thickness d and index n.

Solution: We can again take advantage of the ABCD matrix for a curved interface
(9.43), only with R1 =∞ and R2 =∞ to provide flat surfaces. We take the index
outside of the window to be unity and the index inside the window to be n. We use
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the ABCD matrix (9.43) twice, once for each interface, sandwiching matrix (9.31),
which endows the window with thickness:[

A B
C D

]
=

[
1 0
0 n

][
1 d
0 1

][
1 0
0 1

n

]
=

[
1 d/n
0 1

]
(window)

(9.48)

As far as rays are concerned, a window is effectively shorter to traverse than free

Figure 9.11 Window.

space.8 Fig. 9.11 illustrates why this is the case. The displacement of the exiting ray
is not as great as it would have been without the window. The window impedes
the rate at which the ray can move away from or toward the optical axis.

Example 9.7

Find ray
[

y2
θ2

]
that results when

[
y1
θ1

]
propagates through a distance a, reflects from

a mirror of radius R, and then propagates through a distance b. See Fig. 9.12.

Solution: The final ray in terms of the initial one is computed as follows:[
y2

θ2

]
=

[
1 b
0 1

][
1 0

−2/R 1

][
1 a
0 1

][
y1

θ1

]
=

[
1−2b/R a +b −2ab/R
−2/R 1−2a/R

][
y1

θ1

]
=

[
(1−2b/R) y1 + (a +b −2ab/R)θ1

(−2/R) y1 + (1−2a/R)θ1

] (9.49)

As always, the ordering of the matrices is important. The first effect that the ray
experiences is represented by the matrix on the right, which is in the position that

operates first on
[

y1
θ1

]
.

Figure 9.12 A ray that travels
through a distance a, reflects from
a mirror, and then travels through
a distance b.

We have derived our basic ABCD matrices for rays traveling in the y–z plane,
as suggested in Figs. 9.7–9.12. This may have given the impression that it is
necessary to work within a plane that contains the optical axis (i.e. the z-axis
in our case). However, within the paraxial approximation, the ABCD matrices
are valid for rays that become displaced simultaneously in both the x and y
dimensions during propagating along z.

As we demonstrate below, the behavior of rays functions independently in
the x and y dimensions. If desired, one can write a ray vector for each dimen-

sion, namely
[ x
θx

]
and

[
y
θy

]
. Moreover, the identical matrices, for example any

in table 9.1, are used for either dimension. Figs. 9.7–9.12 therefore represent
projections of rays onto the y–z plane. To complete the story, one can imagine
corresponding figures representing the projection of the rays onto the x–z plane.

8In contrast, the optical path length OPL is effectively longer than free space by the factor n.
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Independence of Rays in the x and y Dimensions

Imagine a ray contained within a plane that is parallel to the y–z plane but for
which x > 0. One might be concerned that when the ray meets, for example, a
spherically concave mirror, the radius of curvature in the perspective of the y–z
dimension might be different for x > 0 than for x = 0 (at the center of the mirror).
This concern is actually quite legitimate and is the source of what is known as
spherical aberration. Nevertheless, in the paraxial approximation the intersection
with the curved mirror of all planes that are parallel to the optical axis gives the
same curve.

To see why this is so, consider the curvature of the mirror in Fig. 9.8. As we
move away from the mirror center (in the x or y-dimension or some combination
thereof), the mirror curves to the left by the amount

δ= R −R cosφ (9.50)

In the paraxial approximation, we have cosφ∼= 1−φ2/2. And since in this approxi-

mation we may also write φ∼=
√

x2 + y2
/

R, (9.50) becomes

δ∼= x2

2R
+ y2

2R
(9.51)

In the paraxial approximation, we see that the curve of the mirror is parabolic, and
therefore separable between the x and y dimensions. That is, the curvature in
the x-dimension (i.e. ∂δ/∂x = x/R) is independent of y , and the curvature in the
y-dimension (i.e. ∂δ/∂y = y/R) is independent of x. A similar argument can be
made for a spherical interface between two media.

Galileo di Vincenzo Bonaiuti de’
Galilei (1564–1642, Italian) was born in
Pisa, Italy, the son of a musician. Galileo
enrolled in the University of Pisa with
the intent to study medicine but soon
became diverted into mathematics. He
served three years as chair of mathe-
matics in Pisa beginning in 1589 and
then moved to the University of Padua
where he taught geometry, mechanics,
and astronomy for two decades. While
Galileo did not invent the telescope, he
improved the design considerably. With
it, he discovered four moons of Jupiter
and was the first to observe sunspots
and mountains and valleys on the Moon.
Galileo also was the first to document
the phases of Venus, similar to the
phases of the moon. He used these ob-
servations to argue in favor of the Coper-
nican model of the solar system, but this
conflicted with the prevailing views of
the Catholic Church at the time. He was
placed under house arrest and forbidden
to publish of any of his works. While un-
der house arrest, he wrote much on kine-
matics and other principles of physics
and is considered to be the father of
modern physics. Galileo attempted to
measure the speed of light by observing
an assistant uncover a lantern on a dis-
tant hill in response to a light signal. He
concluded that light is “very swift” if not
instantaneous. (Wikipedia)

When many ABCD matrices are multiplied together to represent, for example,
a multi-element lens system, remarkably the resulting ABCD matrix has the
following property: ∣∣∣∣ A B

C D

∣∣∣∣= 1 (9.52)

The determinant of the ABCD matrix is one so long as we begin and end in the
same index of refraction.9 Notice that the determinants of all of the matrices in
table 9.1 are one. Moreover, matrices constructed of matrices whose determinants
are one are guaranteed also to have determinants equal to one.

9.6 Image Formation

Consider Example 9.7 where a ray travels a distance a, reflects from a curved
mirror, and then travels a distance b. From (9.49), the ABCD matrix for the overall
process is [

A B
C D

]
=

[
1−b/ f a +b −ab/ f
−1/ f 1−a/ f

]
(9.53)

9The determinant of (9.43) is not one since it starts and ends with different indices of refraction.
However, when this matrix is used in succession to form a lens, the resulting matrix has determinant
equal to one.

https://en.wikipedia.org/wiki/Galileo_Galilei
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where by (9.47) we have replaced 2/R with 1/ f . Because of the similarity between
the behavior of a curved mirror and a thin lens, the above expression can also
represent a ray traveling a distance a, traversing a thin lens with focal length f ,
and then traveling a distance b. The only difference is that, in the case of the thin
lens, f is given by lens maker’s formula (9.46).

As is well known, it is possible to form an image with either a curved mirror
or a lens. Suppose that the initial ray is one of many rays that leaves a particular
point on an object positioned a = do before the mirror (or lens). In order for an
image to occur at di = b, it is essential that all rays leaving the particular point on
the object converge to a corresponding point on the image. That is, we want rays
leaving the point y1 on the object (which may take on a range of angles θ1) all to
converge to a single point y2 at the image. In the following equation we need y2

to be independent of θ1:[
y2

θ2

]
=

[
A B
C D

][
y1

θ1

]
=

[
Ay1 +Bθ1

C y1 +Dθ1

]
(9.54)

The condition for image formation is therefore

B = 0 (condition for image formation) (9.55)

When this condition is applied to (9.53), we obtain

do +di − dodi

f
= 0 ⇒ 1

f
= 1

do
+ 1

di
(9.56)

which is the familiar imaging formula (9.1). When the object is infinitely far away
(i.e. do →∞), the image appears at di → f . This gives a physical interpretation
to the focal length f , as we have been calling it. Please note that do and di can
each be either positive (real as depicted in Fig. 9.13) or negative (virtual meaning
a screen cannot be inserted to display the image).

Object

Image

Figure 9.13 Image formation by a
thin lens.

The magnification of the image is found by comparing the size of y2 to y1.
From (9.53)–(9.56), the magnification is found to be

M ≡ y2

y1
= A = 1− di

f
=−di

do
(9.57)

The negative sign indicates that for positive distances do and di the image is
inverted.

Example 9.8

Beginning students are often taught to draw ray diagrams such as the one in Fig.
9.14, which shows a real image formed by a thin lens. Several key rays aid in a
graphic prediction of the location and size of the image. Use ABCD-matrix analysis
to describe the effect of the lens on the three rays drawn.
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image

object

A

B

C

Figure 9.14 Formation of a real image by a thin lens.

Solution: Ray A is parallel to the axis with height y1 before traversing the lens. Just
after the lens, ray A is described by[

y2

θ2

]
=

[
1 0

−1/ f 1

][
y1

0

]
=

[
y1

−y1/ f

]
which crosses the axis at the focus d = f , since

[
1 f
0 1

][
y1

−y1/ f

]
=

[
0

−y1/ f

]
.

Meanwhile, ray B traverses the lens just where it crosses the axis. The lens
does nothing to this ray:[

y2

θ2

]
=

[
1 0

−1/ f 1

][
0
θ1

]
=

[
0
θ1

]
Ray B is undeflected. For ray B, θ1 =−y1/do .

Finally, ray C, which crosses the axis a distance d = f before the lens, be-
comes parallel to the axis after traversing the lens:[

1 0
−1/ f 1

][
1 f
0 1

][
0
θ1

]
=

[
f θ1

0

]
For ray C, θ1 =

(
y2 − y1

)
/do .

In the above discussion, we have examined image formation by a thin lens
or a curved mirror. Of course, images can also be formed by thick lenses or by
more complex composite optical systems (e.g. a system of lenses and spaces).
The ABCD matrices for the elements in a composite system are simply multiplied
together to obtain an overall ABCD matrix. We can derive the condition for image
formation by an arbitrary ABCD matrix in the same way that we did above for a
thin lens or curved mirror. As before, consider propagation through a distance do

from an object to the optical system followed by propagation through a distance
di to an image. The ABCD matrix for the overall operation is[

1 di

0 1

][
A B
C D

][
1 do

0 1

]
=

[
A+di C do A+B +dodi C +di D

C doC +D

]
=

[
A′ B ′

C ′ D ′
] (9.58)
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An image occurs according to (9.55) when

B ′ = do A+B +dodi C +di D = 0,general condition for image
formation

(9.59)

with magnification
M = A′ = A+di C (9.60)

Angular Magnification of a Telescope

A telescope consists of two lenses, the first called the objective lens with focal
length fo and the second called the eye piece with focal length fe . The function of a
telescope is to map all rays having incident angle θ1 into corresponding rays all
with wider angle θ2. Importantly, θ2 should only depend on θ1 and not on where
each ray enters the objective lens (i.e. y1).

Rays from 
a distant 
object Real Image

Figure 9.15 Basic telescope con-
sisting of an objective lens and an
eye piece.

The ABCD matrix of the system is[
A B
C D

]
=

[
1 0

− 1
fe

1

][
1 L
0 1

][
1 0

− 1
fo

1

]
=

[
1− L

fo
L

− 1
fo
− 1

fe
+ L

fo fe
1− L

fe

]

where L is the separation between the lenses. Since[
y2

θ2

]
=

[
A B
C D

][
y1

θ1

]
=

[
Ay1 +Bθ1

C y1 +Dθ1

]
we need C = 0 or − 1

fo
− 1

fe
+ L

fo fe
= 0 to ensure that θ2 depends only on θ1. This

reduces simply to
L = fo + fe (9.61)

which is the required separation between the objective lens and the eye piece.

The angular magnification is defined to be

Mθ ≡
θ2

θ1
= D = 1− L

fe
=− fo

fe
(9.62)

The angular magnification is governed by the ratio of the two focal lengths. When
looking through a telescope, the apparent angular separation between distant
objects is enhanced by this factor. The minus sign indicates that objects in the
field of view tend to be inverted.

9.7 Principal Planes for Complex Optical Systems

For every ABCD matrix representing an optical system, there exist two principal
planes,10 located (in our convention) a distance p1 before entering the system
and a distance p2 after exiting the system. When the matrices corresponding to
these (appropriately chosen) distances are appended to the original ABCD matrix
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of the system, the overall matrix simplifies to one that looks identical to the matrix
for a simple thin lens (9.45).

First 
Principal 
Plane

Second
Principal
Plane

Figure 9.16 A multi-element sys-
tem represented as an ABCD ma-
trix for which principal planes
always exist.

With knowledge of the positions of the principal planes, one can treat the
complicated imaging system in the same way that one treats a simple thin lens.
That is, we can simply use the common imaging formulas (9.56) and (9.57). The
only difference is that do is the distance from the object to the first principal plane
and di is the distance from the second principal plane to the image. In the case
of an actual thin lens, both principal planes are at p1 = p2 = 0. For a composite
system, p1 and p2 can be either positive or negative.

We assert that for any optical system,11 p1 and p2 can always be selected such
that we can write[

1 p2

0 1

][
A B
C D

][
1 p1

0 1

]
=

[
A+p2C p1 A+B +p1p2C +p2D

C p1C +D

]
=

[
1 0

−1/ feff 1

] (9.63)

The final matrix is that of a simple thin lens, and it takes the place of the composite
system including the distances to the principal planes.

Determination of p1 and p2 and Justification of (9.63)

Our task is to find the values of p1 and p2 that make (9.63) true. We can straight-
away make the definition

feff ≡−1/C (9.64)

We can also solve for p1 and p2 by setting the diagonal elements of the matrix to 1.
Explicitly, we get

p1C +D = 1 ⇒ p1 = 1−D

C
(9.65)

and

A+p2C = 1 ⇒ p2 = 1− A

C
(9.66)

It remains to be shown that the upper right element in (9.63) (i.e. p1 A+B+p1p2C+
p2D) automatically goes to zero for our choices of p1 and p2. This may seem
unlikely at first, but watch what happens!

When (9.65) and (9.66) are substituted into the upper right matrix element of (9.63)
we get

p1 A+B +p1p2C +p2D = 1−D

C
A+B + 1−D

C

1− A

C
C + 1− A

C
D

= 1

C
[1− AD +BC ]

= 1

C

(
1−

∣∣∣∣ A B
C D

∣∣∣∣)
(9.67)

This vanishes (as desired) since the determinant of the ABCD matrix is one, in
accordance with (9.52).

10R. Guenther, Modern Optics, p. 186 (New York: Wiley, 1990).
11The starting and ending refractive index must be the same.
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9.8 Stability of Laser Cavities

  

(a)

(b)

(c)

(d)

Figure 9.17 (a) A ray bouncing
between two parallel flat mirrors.
(b) A ray bouncing between two
curved mirrors in an unstable
configuration. (c) A ray bouncing
between two curved mirrors in a
stable configuration. (d) Stable
cavity utilizing a lens and two flat
end mirrors.

The ABCD matrix formulation provides a powerful tool to analyze the stability of a
laser cavity.12 The basic elements of a laser cavity include an amplifying medium
and mirrors to provide feedback. Presumably, at least one of the end mirrors is
partially transmitting so that energy is continuously extracted from the cavity.
Here, we dispense with the amplifying medium and concentrate our attention on
the optics providing the feedback.

As might be expected, the mirrors must be carefully aligned or successive
reflections might cause rays to ‘walk’ continuously away from the optical axis,
so that they eventually leave the cavity out the side. If a simple cavity is formed
with two flat mirrors that are perfectly aligned parallel to each other, one might
suppose that the mirrors would provide ideal feedback. However, all rays except
for those that are perfectly aligned to the mirror surface normals would eventually
wander out of the side of the cavity as illustrated in Fig. 9.17a. Such a cavity is said
to be unstable. We would like to do a better job of trapping the light in the cavity.

To improve the situation, a cavity can be constructed with concave end mir-
rors to help confine the beams within the cavity. Even so, one must choose
carefully the curvature of the mirrors and their separation L. If this is not done
correctly, the curved mirrors can ‘overcompensate’ for the tendency of the rays
to wander out of the cavity and thus aggravate the problem. Such an unstable
scenario is depicted in Fig. 9.17b.

Figure 9.17c depicts a cavity made with curved mirrors where the separation
L is chosen appropriately to make the cavity stable. Although a ray, as it makes
successive bounces, can strike the end mirrors at a variety of points, the curvature
of the mirrors keeps the ‘trajectories’ contained within a narrow region so that
they cannot escape out the sides of the cavity.

There are many ways to make a stable laser cavity. For example, a stable cavity
can be made using a lens between two flat end mirrors as shown in Fig. 9.17d. Any
combination of lenses (perhaps more than one) and curved mirrors can be used
to create stable cavity configurations. Ring cavities can also be made to be stable
where in no place do the rays retro-reflect from a mirror but circulate through
a series of elements like cars going around a racetrack. The ABCD matrix for a
round trip in the cavity will be useful for this analysis.

Example 9.9

Find the round-trip ABCD matrix for the cavities shown in Figs. 9.17c and 9.17d.

Solution: The round-trip ABCD matrix for the cavity shown in Fig. 9.17c is[
A B
C D

]
=

[
1 L
0 1

][
1 0

−2/R2 1

][
1 L
0 1

][
1 0

−2/R1 1

]
(9.68)

where we begin the round trip with a reflection from the first mirror.

12P. W. Milonni and J. H. Eberly, Lasers, Sect. 14.3 (New York: Wiley, 1988).
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The round-trip ABCD matrix for the cavity shown in Fig. 9.17d is[
A B
C D

]
=

[
1 2L1

0 1

][
1 0

−1/ f 1

][
1 2L2

0 1

][
1 0

−1/ f 1

]
(9.69)

where we begin the round trip with transmission through the lens moving to the
right. It is somewhat arbitrary where a round trip begins. Multiplication of the
above matrices will be necessary to do problems P9.17 and P9.18.

To determine whether a given configuration of a cavity is stable, we need to
know what a ray does after making many round trips in the cavity. To find the
effect of propagation through many round trips, we multiply the round-trip ABCD
matrix together N times, where N is the number of round trips that we wish to
consider. We can then examine what happens to an arbitrary ray after making N
round trips in the cavity as follows:[

yN+1

θN+1

]
=

[
A B
C D

]N [
y1

θ1

]
(9.70)

At this point you might be concerned that taking an ABCD matrix to the N th

power can be a lot of work. (It is already a significant work just to compute the
ABCD matrix for a single round trip.) In addition, we are interested in letting N
be very large, perhaps even infinity. You can relax because we have a neat trick to
accomplish this daunting task.

By Sylvester’s theorem in appendix 0.3, we have[
A B
C D

]N

= 1

sinθ

[
A sin Nθ− sin(N −1)θ B sin Nθ

C sin Nθ D sin Nθ− sin(N −1)θ

]
(9.71)

where

cosθ = 1

2
(A+D) (9.72)

This is valid as long as the determinant of the ABCD matrix is one. As noted
earlier (see (9.52)), we are in luck! The determinant is one any time a ray begins
and stops in the same refractive index, which by definition is guaranteed for any
round trip. We therefore can employ Sylvester’s theorem for any N that we might
choose, including very large integers.

We would like the elements of (9.71) to remain finite as N becomes very large.
If this is the case, then we know that a ray remains trapped within the cavity
and stays reasonably close to the optical axis. Since N only appears within the
argument of a sine function, which is always bounded between −1 and 1 for
real arguments, it might seem that the elements of (9.71) always remain finite
as N approaches infinity. However, it turns out that θ can become imaginary
depending on the outcome of (9.72), in which case the sine becomes a hyperbolic
sine, which can ‘blow up’ as N becomes large. In the end, the condition for cavity
stability is that a real θ must exist for (9.72), or in other words we need

−1 < 1

2
(A+D) < 1 (condition for a stable cavity) (9.73)
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It is left as an exercise to apply this condition to (9.68) and (9.69) to find the
necessary relationships between the various element curvatures and spacing in
order to achieve cavity stability.

Appendix 9.A Aberrations and Ray Tracing

(a)

(b)

Figure 9.18 (a) Paraxial theory pre-
dicts that the light imaged from
a point source will converge to a
point (i.e. have spherical wave-
fronts coming to the image point).
(b) The image of a point source
made by a real lens with aberra-
tions is an extended and blurred
patch of light and the converg-
ing wavefronts are only quasi-
spherical.

The paraxial approximation places serious limitations on the performance of
optical systems (see (9.23) and (9.24)). To stay within the approximation, all rays
traveling in the system should travel very close to the optic axis with very shallow
angles with respect to the optical axis. To the extent that this is not the case, the
collection of rays associated with a single point on an object may not converge to
a single point on the associated image. The resulting distortion or “blurring” of
the image is known as aberration.

Common experience with photographic and video equipment suggests that
it is possible to image scenes that have a relatively wide angular extent (many
tens of degrees), in apparent serious violation of the paraxial approximation.
The paraxial approximation is indeed violated in these devices, so they must be
designed using more complicated analysis techniques than those we have learned
in this chapter. The most common approach is to use a computationally intensive
procedure called ray tracing in which sinθ and tanθ are rendered exactly. The
nonlinearity of these functions precludes the possibility of obtaining analytic
solutions describing the imaging performance of such optical systems.

The typical procedure is to start with a collection of rays from a test point such
as shown in Fig. 9.19. Each ray is individually traced through the system using
the exact representation of geometric surfaces as well as the exact representation
of Snell’s law. On close analysis, the rays typically do not converge to a distinct
imaging point. Rather, the rays can be ‘blurred’ out over a range of points where
the image is supposed to occur. Depending on the angular distribution of the
rays as well as on the elements in the setup, the spread of rays around the image
point can be large or small. The engineer who designs the system must determine
whether the amount of aberration is acceptable, given the various constraints of
the device.

Figure 9.19 Ray tracing through a
simple lens.

To minimize aberrations below typical tolerance levels, several lenses can
be used together. If properly chosen, the lenses (some positive, some negative)
separated by specific distances, can result in remarkably low aberration levels
over certain ranges of operation for the device. Ray tracing is best done with
commercial software designed for this purpose. Such software packages are able
to develop and optimize designs for specific applications. A useful feature in many
software packages is that the user can specify that the design should employ only
standard optical components available from known optics companies. In any
case, it is typical to specify that all lenses in the system should have spherical
surfaces since these are much less expensive to manufacture. We mention briefly
several common classes of aberrations that can occur if a lens system is not
properly designed.
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Chromatic aberration arises from the fact that the index of refraction for glass
varies with the wavelength of light. Since the focal length of a lens depends on
the index of refraction (see, for example, Eq. (9.46)), the focal length of a lens
varies with the wavelength of light. Chromatic aberration can be compensated
for by using a pair of lenses made from two types of glass as shown in Fig. 9.20
(the pair is usually cemented together to form a “doublet” lens). The lens with the
shortest focal length is made of the glass whose index has the lesser dependence
on wavelength. By properly choosing the prescription of the two lenses, you
can exactly compensate for chromatic aberration at two wavelengths and do a
good job for a wide range of others. Achromatic doublets can also be designed to
minimize spherical aberration (see below), so they are often a good choice when
you need a high quality lens.

low dispersion
glass

high dispersion
glass

Figure 9.20 Chromatic aberration
causes lenses to have different
focal lengths for different wave-
lengths. It can be corrected using
an achromatic doublet lens.

Monochromatic aberrations arise from the shape of the lens rather than the
variation of n with wavelength. Before the advent of computers facilitated the
widespread use of ray tracing, these aberrations had to be analyzed analytically.
The analytic results derived previously in this chapter were based on a first-order
approximation (e.g. sinθ ≈ θ). One can increase the accuracy of the theory for
nonparaxial rays by retaining higher-order terms in the polynomial representation
of sinθ. With higher-order terms included, the wavefronts converging towards an
image point are still approximately spherical, but have aberration terms added
in (shown conceptually in Fig. 9.18(b)). Without going into detail, there are
five aberration terms in the standard second-order analysis, which represent a
convenient basis for discussing aberration.

The first aberration term is known as spherical aberration. This type of aber-
ration results from the fact that rays traveling through a spherical lens at large
radii experience a different focal length than those traveling near the axis. For
a converging lens, this causes far-off-radius rays to focus before the near-axis
rays as shown in Fig. 9.21. This problem can be helped by orienting lenses so
that the face with the least curvature is pointed towards the side where the light
rays have the largest angle. This procedure splits the bending of rays more evenly
between the front and back surface of the lens. As mentioned above, you can also
cement two lenses made from different types of glass together so that spherical
aberrations from one lens are corrected by the other.

Figure 9.21 Spherical aberration in a plano-convex lens.
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The aberration term referred to as astigmatism occurs when an off-axis object
point is imaged to an off-axis image point. In this case a spherical lens has a
different focal length in the horizontal and vertical dimensions. For a focusing lens
this causes the two dimensions to focus at different distances, producing a vertical
‘line’ at one image plane and a horizontal ‘line’ at another (see Fig. 9.22). A lens
can also be inherently astigmatic even when viewed on axis if it is football shaped
rather than spherical. In this case, the astigmatic aberration can be corrected by
inserting a cylindrical lens at the correct orientation (this is a common correction
needed in eyeglasses).

Object

Vertical 
Focus

Horizontal
Focus

Figure 9.22 Astigmatism causes
the horizontal and vertical di-
mensions to focus at different
distances.

A third aberration term is referred to as coma. This is observed when off-axis
points are imaged and produces a comet shaped tail with its head at the point
predicted by paraxial theory. (The term ‘coma’ refers to the atmosphere of a
comet, which is how the aberration got its name.) This aberration is distinct from
astigmatism, which is also observed for off-axis points, since coma is observed
even when all of the rays are in one plane (see Fig. 9.23). You have probably seen
coma if you’ve ever played with a magnifying glass in the sun—just tilt the lens
slightly and you see a comet-like image rather than a point.

The curvature of the field aberration term arises from the fact that spherical
lenses image spherical surfaces to another spherical surface, rather than imaging
a plane to a plane. This is not so bad for your eyeball, which has a curved screen,
but for things like cameras and movie projectors we would like to image to a flat
screen. When a flat screen is used and the curvature of the field aberration is
present, the image will focus well near the center, but become progressively out
of focus as you move to the edge of the screen (i.e. the flat screen is farther from
the curved image surface as you move from the center).

The final aberration term is referred to as distortion. This aberration occurs
when the magnification of a lens depends on the distance from the center of

Image on screen

a

b
c

a

b

c

Figure 9.23 Illustration of coma. Rays traveling through the center of the lens are im-
aged to point a as predicted by paraxial theory. Rays that travel through the lens at
radius ρb in the plane of the figure are imaged to point b. Rays that travel through the
lens at radius ρb , but outside the plane of the figure are imaged to other points on the
circle (in the image plane) containing point b. Rays at that travel through the lens at
other radii on the lens (e.g. ρc) also form circles in the image plane with radius propor-
tional to ρ2 with the center offset from point a a distance proportional to ρ2. When
light from each of these circles combines on the screen it produces an imaged point
with a “comet tail.”
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the screen. If magnification decreases as the distance from the center increases,
then ‘barrel’ distortion is observed. When magnification increases with distance,
‘pincushion’ distortion is observed (see Fig. 9.24).

Undistorted

Barrel Distortion

Pincushion Distortion

Figure 9.24 Distortion occurs
when magnification is not con-
stant across an extended image.

All lenses will exhibit some combination of the aberrations listed above (i.e.
chromatic aberration plus the five second-order aberration terms). In addition to
the five named monochromatic aberrations, there are many other higher order
aberrations that also have to be considered. Aberrations can be corrected to a high
degree with multiple-element systems (designed using ray-tracing techniques)
composed of lenses and irises to eliminate off-axis light. For example, a camera
lens with a focal length of 50 mm, one of the simplest lenses in photography, is
typically composed of about six individual elements. However, optical systems
never completely eliminate all aberration, so designing a system always involves
some degree of compromise in choosing which aberrations to minimize and
which ones you can live with.
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Exercises

Exercises for 9.1 The Eikonal Equation

P9.1 Consider the index described in Example 9.1. The solution given in
the example corresponds to rays that asymptotically approach y = 0. A
more general solution is given by

∇R = n0

(
x̂
p

1+α± ŷ
√

y2/h2 −α
) (

1+α> 0 and y2/h2 −α> 0
)

This corresponds to rays that either hit the ground or return toward the
sky without reaching the ground, depending on the sign of α.
(a) Verify that ∇R satisfies the eikonal equation and determine the
function R

(
x, y

)
.

HINT:
∫

dξ
√
ξ2 −α= ξ

2

√
ξ2 −α− α

2 ln
(
ξ+

√
ξ2 −α

)
(ξ−α> 0).

(b) Verify that the light path is given by y = h
p
αcosh

(
x−x0

h
p

1+α
)

when

α> 0 or is given by y = h
p|α|sinh

∣∣∣ x−x0

h
p

1+α

∣∣∣ when α< 0. Consider only

the region y > 0 (i.e. above ground). Notice that these solutions can
make rays that travel either to the right or to the left.
HINT: cosh2 ξ− sinh2 ξ= 1 d

dξ coshξ= sinhξ d
dξ sinhξ= coshξ.

(c) Make a sketch of these two solution classes in the case of α=±1/4.

P9.2 Prove that under the approximation of very short wavelength, the
Poynting vector is directed along ∇R (r) or ŝ.

Solution: (partial)

We have E(r, t ) = E0(r)ei (kvacR(r)−ωt ), and from Faraday’s law (1.35) we have

B(r, t ) =− i

ω
∇×

(
E0(r)ei (kvacR(r)−ωt )

)
Applying the identity ∇× (

aψ
)=ψ(∇×a)+∇ψ×a to this equation gives

B(r, t ) =− i

ω

(
ei (kvacR(r)−ωt ) [∇×E0(r)]+ i kvacei (kvacR(r)−ωt ) [∇R(r)×E0(r)]

)
=−i

λvac

2πc
ei [kvacR(r)−ωt ] [∇×E0 (r)]− 1

c
ei [kvacR(r)−ωt ] [∇R (r)×E0(r)]

The first term vanishes in the limit of very short wavelength, so we simply write

B(r, t ) → 1

c
[∇R (r)]×E0 (r)ei [kvacR(r)−ωt ].

To obtain the result, we must compute the Poynting vector:

S = 1

µ0
Re{E(r, t )}×Re{B(r, t )}

= 1

4µ0

[
E (r, t )+E∗(r, t )

]× [
B(r, t )+B∗ (r, t )

]
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The BAC-CAB rule (P0.3) will come in handy along with the fact that ∇R(r) ·E0(r) → 0. To confirm
the latter, we employ Gauss’s law (1.33) and the constitutive relation (2.16) as follows:

∇·
[(

1+χ(r)
)

E0(r)ei (kvacR(r)−ωt )
]
= 0

Applying the identity ∇· (aψ) = a ·∇ψ+ψ∇·a to this expression yields

ei (kvacR(r)−ωt )∇· [(1+χ (r)
)

E0 (r)
]+ i kvacei (kvacR(r)−ωt ) (

1+χ(r)
)

[∇R (r) ·E0(r)] = 0

After canceling the common exponential factor, using kvac = 2π/λvac, and performing some
algebra, we get

−iλvac
∇· [(1+χ(r)

)
E0(r)

]
2π

(
1+χ(r)

) +∇R(r) ·E0(r) = 0

In the limit of very short wavelength, this reduces to

∇R(r) ·E0(r) → 0

Exercises for 9.2 Fermat’s Principle

P9.3 A mirage can be created using a pan of ice water placed above a hotplate
with a small air gap,13 as shown in Fig. 9.25. Suppose a thermocouple
measures a uniform temperature gradient from 100◦C to 300◦C over
a distance 4 mm. A narrow laser beam travels d = 16 cm through the
center of the gap where T = 200◦C. How far is the laser beam deflected
laterally (D) after traveling an additional distance L = 40 m? Assume
that the index of refraction follows n = 1+αP

T , where α= 7.8×10−7 K
Pa

and P = 1 atm = 1.013×105 Pa and T is the temperature in Kelvin.

Hotplate

Ice Water

 

  

(Not to Scale)

Laser

Undeflected Beam

Screen

D

Deflected Beam

Jack Stand

Figure 9.25 Setup to deflect a laser beam between a hotplate and pan of ice
water.

HINT: Consider parallel rays within the laser beam, separated by a small
lateral displacement ∆y . The difference in optical path length ∆OPL

13L. Richey, B. Stewart, and J. Peatross, “Creating and Analyzing a Mirage,” Phys. Teach. 44,
460-464 (2006).
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while crossing the hotplate compared to ∆y matches approximately
the lateral displacement D compared to L.

L

D

Hotplate Long Hallway

Screen

L

Figure 9.26 Tilting of a laser wavefront in an index gradient.

P9.4 Use Fermat’s Principle to derive the law of reflection (3.6) for a reflective
surface.

Figure 9.27

HINT: Do not consider light that goes directly from A to B; require a
single bounce.

P9.5 Show that Fermat’s Principle fails to give the correct path for an extraor-
dinary ray entering a uniaxial crystal whose optic axis is perpendicular
to the surface.

HINT: With the index given by (5.27), show that Fermat’s principle
leads to an answer that neither agrees with the direction of the k-vector
(5.30) nor with the direction of the Poynting vector (5.38).

Exercises for 9.4 Reflection and Refraction at Curved Surfaces

P9.6 Derive the ABCD matrix that takes a ray on a round trip through a
simple laser cavity consisting of a flat mirror and a concave mirror of
radius R separated by a distance L. HINT: Start at the flat mirror. Use
the matrix in (9.28) to travel a distance L. Use the matrix in (9.38) to
represent reflection from the curved mirror. Then use the matrix in
(9.28) to return to the flat mirror. The matrix for reflection from the flat
mirror is the identity matrix (i.e. Rflat →∞).

P9.7 Derive the ABCD matrix for a thick lens made of material n2 sur-
rounded by a liquid of index n1. Let the lens have curvatures R1 and R2

and thickness d .
Answer:

[
A B
C D

]
=

 1+ d
R1

(
n1
n2

−1
)

d n1
n2

−
(

n2
n1

−1
)(

1
R1

− 1
R2

)
+ d

R1R2

(
2− n1

n2
− n2

n1

)
1− d

R2

(
n1
n2

−1
) 

When n1 = 1 (i.e. air), the matrix reduces to that in table 9.1.
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P9.8 (a) Show that the ABCD matrix for a thick lens given in table 9.1 reduces
to that of a thin lens (9.45) when the thickness goes to zero.

(b) Starting from the ABCD matrix of a thick lens in table 9.1, deduce
the ABCD matrix for a thick window (thickness d). HINT: A window
may be thought of as a thick lens with infinite radii of curvature.

P9.9 Show that the matrix for a thick lens can be derived by sandwiching a
window between two thin lenses.

HINT: All relevant formulas appear in table 9.1. Let the thin lenses each
have a planar side adjacent to the window. This gives focal lengths
1
f1
= (n−1)

R1
and 1

f2
=− (n−1)

R2
, where R1 is the radius of the first surface of

lens 1, and R2 is the radius of the second surface of lens 2 (negative if
convex).

Exercises for 9.6 Image Formation

P9.10 An object is placed in front of a concave mirror. Find the location of
the image di and magnification M when do = R, do = R/2, do = R/4,
and do = −R/2 (virtual object). Make a diagram for each situation,
depicting rays traveling from a single off-axis point on the object to
a corresponding point on the image. You may want to emphasize
especially the ray that initially travels parallel to the axis and the ray
that initially travels in a direction intersecting the axis at the focal point
R/2.

P9.11 Perform an analysis similar to example 9.8 for the virtual image formed
by the positive lens in Fig. 9.28. Show that the three final rays all cross
at the image.

image object

A

B

C

Figure 9.28 Formation of a virtual
image by a thin lens.

P9.12 Perform an analysis similar to example 9.8 for the virtual image formed
by the negative lens in Fig. 9.29. Show that the three final rays all cross
at the image.

imageobject

A

B

C

Figure 9.29 Formation of a virtual
image by a thin lens with negative
focal length.

P9.13 A complicated lens element is represented by an unknown ABCD ma-
trix (see Fig. 9.30). An object placed a distance d1 before the lens
element causes an image to appear a distance d2 after the unknown
element.

unknown
element

Figure 9.30

Suppose that when d1 = ℓ, we find that d2 = 2ℓ. Also, suppose that
when d1 = 2ℓ, we find that d2 = 3ℓ/2 with magnification −1/2. What is
the ABCD matrix for the unknown element?

HINT: Use the conditions for an image (9.59) and (9.60). First find
linear expressions for A, B , and C in terms of D. Then put the results
into (9.52).
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Exercises for 9.7 Principal Planes for Complex Optical Systems

P9.14 (a) Consider a thick lens (see Fig. 9.31) with d = 5 cm, R1 = 5 cm,
R2 =−10 cm, n = 1.5. Compute the ABCD matrix of the lens.

(b) Where are the principal planes located and what is the effective
focal length feff for this system?

Principal
Plane

Principal
Plane

Figure 9.31

L9.15 Deduce the positions of the principal planes and the effective focal
length of a compound lens system. Reference the positions of the
principal planes to the outside ends of the metal hardware that encloses
the lens assembly. (video)

HINT: Obtain three sets of distances to the object and image planes
and place the data into (9.59) to create three distinct equations for the
unknowns A, B, C, and D. Find A, B, and C in terms of D and place
the results into (9.52) to pin down D. The effective focal length and
principal planes can then be found through (9.64)–(9.66).

Figure 9.32

P9.16 Use a computer program to calculate the ABCD matrix for the com-
pound system shown in Fig. 9.33, known as the “Tessar lens.” The
details of this lens are as follows (all distances are in the same units,
and only the magnitude of curvatures are given—you decide the sign):
Convex-convex lens 1 (thickness 0.357, R1 = 1.628, R2 = 27.57, n =
1.6116) is separated by 0.189 from concave-concave lens 2 (thickness
0.081, R1 = 3.457, R2 = 1.582, n = 1.6053), which is separated by 0.325
from plano-concave lens 3 (thickness 0.217, R1 =∞, R2 = 1.920, n =
1.5123), which is directly followed by convex-convex lens 4 (thickness
0.396, R1 = 1.920, R2 = 2.400, n = 1.6116).

1 2 3 4

Figure 9.33

Exercises for 9.8 Stability of Laser Cavities

P9.17 (a) Show that the cavity depicted in Fig. 9.17c is stable if

0 <
(
1− L

R1

)(
1− L

R2

)
< 1

(b) The two concave mirrors have radii R1 = 60 cm and R2 = 100 cm.
Over what range of mirror separation L is it possible to form a stable
laser cavity?

HINT: There are two different stable ranges with an unstable range
between them.

P9.18 Find the stable ranges for L1 = L2 = L for the laser cavity depicted in
Fig. 9.17d with focal length f = 50 cm.

Figure 9.34

L9.19 Experimentally determine the stability range of a HeNe laser with ad-
justable end mirrors. Check that this agrees reasonably well with theory.
Can you think of reasons for any discrepancy? (video)

https://vimeo.com/717097166
https://vimeo.com/717097206
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Diffraction

Christiaan Huygens (1629–1695,
Dutch) was born in The Hague, Nether-
lands. His father was friends with the
mathematician René Descartes, which
probably influenced his upbringing. Huy-
gens studied law and mathematics at
the University of Leiden, which preceded
a very productive career as a scientist
and mathematician. During mid career,
Huygens held a position in the French
Academy of Sciences in Paris for 15
years, but he spent the majority of his
life in The Hague. Huygens was the
first to advocate the wave theory of light.
He was able to explain birefringence in
terms of his wave theory assuming a
refractive index that varied with direc-
tion. Huygens constructed a telescope
with which he discovered Saturn’s moon
Titan. He also made the first detailed
observations of the Orion nebula. Huy-
gens made significant advancements
in clock-making technology and wrote
a book on probability theory. Huygens
was one of the earliest science-fiction
writers and speculated that life exists on
other planets in his book Cosmotheoros.
(Wikipedia)

In the 1600’s, Christiaan Huygens developed a wave description for light. Unfor-
tunately, his ideas were largely overlooked at the time because Sir Isaac Newton
promoted a competing theory. Newton proposed that light should be thought
of as many tiny bullets, or corpuscles, as he called them. Newton’s ideas pre-
vailed for more than a century, perhaps because he was right on so many other
things, until 1807 when Thomas Young performed his famous two-slit experiment,
conclusively demonstrating the wave nature of light. Even then, Young’s conclu-
sions were accepted only gradually by others, a notable exception being a young
Frenchman named Augustin Fresnel. The two formed a close friendship through
correspondence, and it was Fresnel that followed up on Young’s conclusions and
dedicated his life to a study of light.

Fresnel’s skill as a mathematician allowed him to transform physical intuition
into powerful and concise ideas. Perhaps Fresnel’s greatest accomplishment was
the adaptation of Huygens’ principle of wavelet superposition into a mathematical
formula. Ironically, he used Newton’s calculus to achieve this. Huygens’ principle
asserts that a wavefront can be thought of as many wavelets, which propagate and
interfere to form new wave fronts. This is illustrated in Fig. 10.1. The phenomenon
of diffraction is then understood as the spilling of wavelets around obstructions
in the path of light.

After formulating Huygens’ principle as a diffraction integral, Fresnel made
an approximation to his own formula, called the Fresnel approximation, for the
sake of making the integration easier to perform. As far as approximations go,
the Fresnel approximation is surprisingly accurate in describing the light field
in the region downstream from an aperture. The diffraction pattern can evolve
in complicated ways as the distance from an aperture increases. At distances far
downstream from an aperture, the diffraction pattern acquires a final form that
no longer evolves, other than to grow in proportion to distance. This far-field
limit is often of interest, and it turns out that the Fresnel diffraction formula can
be simplified further in this case. The far-field limit of the Fresnel diffraction
formula is called the Fraunhofer approximation.

From the modern perspective, Fresnel’s diffraction formula needs justification
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https://en.wikipedia.org/wiki/Christiaan_Huygens


260 Chapter 10 Diffraction

starting from Maxwell’s equations. The diffraction formula is based on scalar
diffraction theory, which ignores polarization effects. In some situations, ignor-
ing polarization is benign, but in other situations, ignoring polarization effects
produces significant errors. These issues as well as the approximations leading to
scalar diffraction theory are discussed in section 10.2.

10.1 Huygens’ Principle as Formulated by Fresnel

Figure 10.1 Wave fronts depicted
as a series of Huygens’ wavelets.

In this section we discuss the calculus of summing up the contributions from the
many wavelets originating in an aperture illuminated by a light field. Each point
in the aperture is thought of as a source of a spherical wavelet.1 In our modern
notation, such a spherical wave can be written as proportional to e i kR /R, where
R is the distance from the source. As a spherical wave propagates, its strength
falls off in proportion to the distance traveled and the phase is related to the
distance propagated, similar to the phase of a plane wave. It should be noted that
by choosing k, we consider only a single wavelength of light (i.e. one frequency).

A spherical wave of the form e i kR /R technically does not satisfy Maxwell’s
equations (see P10.4). For one thing, it utterly fails near R = 0. However, if R is
large compared to a wavelength, this spherical wave starts to resemble actual
solutions to Maxwell’s equations, as will be examined in the next section. It is
within this regime that the diffraction formula derived here is successful.

Consider an aperture or opening in an opaque screen located at the plane
z = 0. Let the aperture be illuminated with a light field distribution E(x ′, y ′, z = 0)
within the aperture. Then for a point (x, y, z) lying somewhere after the aperture
(z > 0), the net field is given by adding together the contribution of wavelets
emitted from each point in the aperture.

Figure 10.2

Each spherical wavelet is assigned the strength and phase of the field at the
point where it originates. Mathematically, this summation takes the form

E(x, y, z) =− i

λ

Ï
aperture

E(x ′, y ′,0)
e i kR

R
d x ′d y ′ (10.1)

where

R =
√

(x −x ′)2 + (y − y ′)2 + z2 (10.2)

is the radius of each wavelet as it individually intersects the point (x, y, z). We will
call (10.1) the Huygens-Fresnel2 diffraction formula, although Fresnel is credited
with this integral formulation. The factor −i /λ in front of the integral in (10.1)
ensures the right phase and field strength (not to mention correct units). Justifica-
tion for this factor is given in section 10.3 and in appendix 10.A. To summarize,

1For simplicity, we use the term ‘spherical wave’ in this book to refer to waves of the type
imagined by Huygens (i.e. of the form ei kR /R). There is a different family of waves based on
spherical harmonics that are also sometimes referred to as spherical waves. These waves have
angular as well as radial dependence, and they are solutions to Maxwell’s equations. See J. D.
Jackson, Classical Electrodynamics, 3rd ed., pp. 429–432 (New York: John Wiley, 1999).

2M. Born and E. Wolf, Principles of Optics, 7th ed., p. 414 (Cambridge University Press, 1999).
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(10.1) tells us how to compute the field downstream given knowledge of the field
in an aperture. The field at each point (x ′, y ′) in the aperture, which may vary
with strength and phase, is treated as the source for a spherical wave. The integral
in (10.1) sums the contributions from all of these wavelets.

Figure 10.3 Circular aperture illu-
minated by a plane wave.

Example 10.1

Find the on-axis3 (i.e. x, y = 0) intensity following a circular aperture of diameter
D illuminated by a uniform plane wave.

Solution: The diffraction integral (10.1) takes the form

E (0,0, z) =− i

λ

Ï
aperture

E
(
x ′, y ′,0

) e i k
p

x′2+y ′2+z2√
x ′2 + y ′2 + z2

d x ′d y ′

The circular hole encourages a change to cylindrical coordinates: x ′ = ρ′ cosφ′ and
y ′ = ρ′ sinφ′; d x ′d y ′ → ρ′dρ′dφ′. In this case, the limits of integration define the
geometry of the aperture, and the integration is accomplished as follows:

E (0,0, z) =− i E0

λ

2π∫
0

dφ′
D/2∫
0

e i k
p
ρ′2+z2√

ρ′2 + z2
ρ′ dρ′

=− i E0

λ
2π

e i k
p
ρ′2+z2

i k

∣∣∣∣∣
D/2

0

=−E0

(
e i k

p
(D/2)2+z2 −e i kz

)
The on-axis intensity is then proportional to

E (0,0, z)E∗ (0,0, z) = |E0|2
(
e i k

p
(D/2)2+z2 −e i kz

)(
e−i k

p
(D/2)2+z2 −e−i kz

)
= 2 |E0|2

[
1−cos

(
k
√

(D/2)2 + z2 −kz

)] (10.3)

A graph of this function is shown in Fig. 10.4.

z (mm)

Figure 10.4 Intensity on axis fol-
lowing a circular aperture with
D = 20λ and wavelength λ = 500
nm.

Figure 10.5 Aperture comprised of
the region between a circle and a
square.

When an aperture has a complicated shape, it may be convenient to break
up the diffraction integral (10.1) into several pieces. As an example, suppose that
we have an aperture consisting of a circular obstruction within a square opening
as depicted in Fig. 10.5. Thus, the light transmits through the region between
the circle and the square. One can evaluate the overall diffraction pattern by
first evaluating the diffraction integral for the entire square (ignoring the circular
block) and then subtracting the diffraction integral for a circular opening having
the shape of the block. This removes the unwanted part of the previous integration
and yields the overall result. When doing this, it is important to add and subtract
the integrals (i.e. fields), not their squares (i.e. intensity).

It may be less obvious at first that you can use the above superposition tech-
nique to handle diffraction from finite obstructions that interrupt an infinitely

3An analytical solution is not possible off axis.
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wide plane wave. One simply computes the diffraction of the blocked portion
of the field as though it came from an opening in a mask. The result is then
subtracted from the plane wave (no integration needed for the plane wave), as
depicted in Fig. 10.6. This is known as Babinet’s principle.

Block

Mask

Figure 10.6 Side view of a circular
block in a plane wave giving rise
to diffraction in the geometric
shadow.

When Fresnel first presented his diffraction formula to the French Academy
of Sciences, a certain judge of scientific papers named Siméon Poisson noticed
that Fresnel’s formula predicted that there should be light in the center of the
geometric shadow behind a circular obstruction. This seemed so absurd to
Poisson that he initially disbelieved the theory, until the spot was shortly thereafter
experimentally confirmed, much to Poisson’s chagrin. Needless to say, Fresnel’s
paper was then awarded first prize, and this spot appearing behind circular blocks
has since been known as Poisson’s spot.

Example 10.2

Find the on-axis (i.e. x, y = 0) intensity behind a circular block of diameter D
placed in a uniform plane wave.

Solution: From Example 10.1, the on-axis field behind a circular aperture is

E0

(
e i kz −e i k

p
(D/2)2+z2

)
. Babinet’s principle says to subtract this result from a

plane wave to obtain the field behind the circular block. The situation is depicted
in Fig. 10.6. The on-axis field is then

E (0,0, z) = E0e i kz −E0

(
e i kz −e i k

p
(D/2)2+z2

)
= E0e i k

p
(D/2)2+z2

The on axis intensity becomes

I (0,0, z) ∝ E (0,0, z)E∗ (0,0, z) = |E0|2 e i k
p

(D/2)2+z2
e−i k

p
(D/2)2+z2 = |E0|2

In the exact center of the shadow behind the circular obstruction, the intensity is
the same as the illuminating plane wave for all distance z. A spot of light in the
center forms right away; no wonder Poisson was astonished!

10.2 Scalar Diffraction Theory

In this section we provide the background motivation for Huygen’s principle and
Fresnel’s formulation of it. Consider a light field with a single frequency ω. The
light field can be represented by E (r)e−iωt , and the time derivative in the wave
equation (2.13) can be easily performed. It reduces to

∇2E (r)+k2E (r) = 0 (10.4)

where k ≡ nω/c is the magnitude of the usual wave vector (see also (9.2)). Equa-
tion (10.4) is called the Helmholtz equation. Again, it is merely the wave equation
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written for the case of a single frequency, where the trivial time dependence has
been removed. To obtain the full wave solution, just append the factor e−iωt to
the solution of (10.4).

Francois Jean Dominique Arago
(1786-1853, French) was born in Cata-
lan France, where his father was the
Treasurer of the Mint. As a teenager,
Arago was sent to a municipal college
in Perpignan where he developed a
deep interest in mathematics. In 1803,
he entered the École Polytechnique in
Paris, where he purportedly was dis-
appointed that he was not presented
with new knowledge at a higher rate.
He associated with famous French
mathematicians Siméon Poisson and
Pierre-Simon Laplace. He later worked
with Jean-Baptiste Biot to measure the
meridian arc to determine the exact
length of the meter. This work took him
to the Balearic Islands, Spain, where
he was imprisoned as a spy, being sus-
pected because of lighting fires atop
a mountain as part of his surveying ef-
forts. After a heroic prison escape and
a subsequent string of misfortunes, he
eventually made it back to France where
he took a strong interest in optics and
the wave theory of light. Arago and Fres-
nel established a fruitful collaboration
that extended for many years. It was
Arago who demonstrated Poisson’s spot
(sometimes called Arago’s spot). Arago
also invented the first polarizing filter. In
later life, he served a brief stint as the
French prime minister. (Wikipedia)

At this point we take an egregious step: We ignore the vectorial nature of E(r)
and write (10.4) using only the magnitude E(r). When using scalar diffraction
theory, we must keep in mind that it is based on this serious step. Under the
scalar approximation, the vector Helmholtz equation (10.4) becomes the scalar
Helmholtz equation:

∇2E (r)+k2E (r) = 0 (10.5)

This equation of course is consistent with (10.4) in the case of a plane wave.
However, we are interested in spherical waves of the form E (r ) = E0r0e i kr /r . It
turns out that such spherical waves are exact solutions to the scalar Helmholtz
equation (10.5). The proof is left as an exercise (see P10.3). Nevertheless, spherical
waves of this form only approximately satisfy the vector Helmholtz equation (10.4).
We can get away with this sleight of hand if the radius r is large compared to a
wavelength (i.e. kr ≫ 1) and if we restrict r to a narrow range perpendicular to
the polarization.

Significance of the Scalar Wave Approximation

The solution of the scalar Helmholtz equation is not completely unassociated with
the solution to the vector Helmholtz equation. In fact, if Escalar (r) obeys the scalar
Helmholtz equation (10.5), then

E (r) = r×∇Escalar (r) (10.6)

obeys the vector Helmholtz equation (10.4).

Consider a spherical wave, which is a solution to the scalar Helmholtz equation:

Escalar (r) = E0r0e i kr /r (10.7)

Remarkably, when this expression is placed into (10.6) the result is zero. Although
zero is in fact a solution to the vector Helmholtz equation, it is not very interesting.
A more interesting solution to the scalar Helmholtz equation is

Escalar (r) = r0E0

(
1− i

kr

)
e i kr

r
cosθ (10.8)

which is one of an infinite number of unique ‘spherical’ solutions that exist. Notice
that in the limit of large r , this expression looks similar to (10.7), aside from the
factor cosθ. The vector form of this field according to (10.6) is

E (r) =−φ̂r0E0

(
1− i

kr

)
e i kr

r
sinθ (10.9)

This field looks approximately like the scalar spherical wave solution (10.7) in the
limit of large r if the angle is chosen to lie near θ ∼= π/2 (spherical coordinates).
Since our use of the scalar Helmholtz equation is in connection with this spherical
wave under these conditions, the results are close to those obtained from the
vector Helmholtz equation.

https://en.wikipedia.org/wiki/Francois_Arago
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Figure 10.7

Fresnel developed his diffraction formula (10.1) a half century before Maxwell
assembled the equations of electromagnetic theory. In 1887, Gustav Kirchhoff
demonstrated that Fresnel’s diffraction formula satisfies the scalar Helmholtz
equation. In doing this he clearly showed the approximations implicit in the
theory, and made a slight revision to the formula:

E
(
x, y, z

)=− i

λ

Ï
aperture

E
(
x ′, y ′,0

) e i kR

R

[
1+cos(R, ẑ)

2

]
d x ′d y ′ (10.10)

The factor in square brackets, Kirchhoff’s revision, is known as the obliquity factor.
Here, cos(R, ẑ) indicates the cosine of the angle between R and ẑ. Notice that this
factor is approximately equal to one when the point (x, y, z) is chosen to be in
the forward direction; we usually study diffraction under this circumstance. On
the other hand, the obliquity factor equals zero for fields traveling in the reverse
direction (i.e. in the −ẑ direction). This fixes a problem with Fresnel’s version of
the formula (10.1) based on Huygens’ wavelets, which suggested that light could
as easily diffract in the reverse direction as in the forward direction

In honor of Kirchhoff’s work, (10.10) is referred to as the Fresnel-Kirchhoff
diffraction formula. The details of Kirchhoff’s more rigorous derivation, including
how the factor −i /λ naturally arises, are given in appendix 10.A. Since the Fresnel-
Kirchhoff formula can be understood as a superposition of spherical waves, it is
not surprising that it satisfies the scalar Helmholtz equation (10.5).

10.3 Fresnel Approximation

Although the Fresnel-Kirchhoff integral looks innocent enough, it is actually
quite difficult to evaluate analytically. Even the Huygens-Fresnel version (10.1)
where the obliquity factor (1+cos(r, ẑ))/2 is approximated as one (i.e. far forward
direction) is challenging. The integration can be challenging even if we choose a
field E

(
x ′, y ′,0

)
that is uniform across the aperture (i.e. a constant).

Fresnel introduced an approximation4 to his diffraction formula that makes
the integration somewhat easier to perform. The approximation is analogous to
the paraxial approximation made for rays in chapter 9.

Besides letting the obliquity factor be one, Fresnel approximated R by the
distance z in the denominator of (10.10) . Then the denominator can be brought
out in front of the integral since it no longer depends on x ′ and y ′. This is valid to
the extent that we restrict ourselves to small angles:

R ∼= z (denominator only; Fresnel approximation) (10.11)

The above approximation is wholly inappropriate in the exponent of (10.10) since
small changes in R can result in dramatic variations in the periodic function e i kR .

4J. W. Goodman, Introduction to Fourier Optics, Sect. 4-1 (New York: McGraw-Hill, 1968).
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To approximate R in the exponent, we must proceed with caution. To this end
we expand (10.2) under the assumption z2 ≫ (x − x ′)2 + (y − y ′)2. Again, this is
consistent with the idea of restricting ourselves to relatively small angles. The
expansion of (10.2) is written as

R = z

√
1+ (x −x ′)2 + (

y − y ′)2

z2
∼= z

[
1+

(
x −x ′)2 + (

y − y ′)2

2z2 +·· ·
]

(exponent; Fresnel approximation) (10.12)
Substitution of (10.11) and (10.12) into the Huygens-Fresnel diffraction formula
(10.1) yields

E
(
x, y, z

)∼=− i e i kz e i k
2z (x2+y2)

λz

Ï
aperture

E
(
x ′, y ′,0

)
e i k

2z (x ′2+y ′2)e−i k
z (xx ′+y y ′)d x ′d y ′

(Fresnel approximation) (10.13)
This approximation may look a bit messier than before, but in terms of being able
to make progress on integration our chances are somewhat improved.

Figure 10.8 Field amplitude fol-
lowing a rectangular aperture com-
puted in the Fresnel approxima-
tion.

Example 10.3

Compute the Fresnel diffraction field following a rectangular aperture (dimensions
∆x by ∆y) illuminated by a uniform plane wave.

Solution: According to (10.13), the field downstream is

E
(
x, y, z

)=−i E0

e i kz

λz
e i k

2z (x2+y2)
∆x/2∫

−∆x/2

d x ′e i k
2z x′2

e−i kx
z x′

∆y/2∫
−∆y/2

d y ′e i k
2z y ′2

e−i k y
z y ′

Unfortunately, the integration in the preceding example must be performed
numerically. This is often the case for diffraction integrals in the Fresnel approx-
imation, but at least numerical fast Fourier transforms can aid in the process.
Figure 10.8 shows the result of integration for a rectangular aperture with a height
twice its width.

Paraxial Wave Equation

If we assume that the light coming through the aperture is highly directional, such
that it propagates mainly in the z-direction, we are motivated to write the field
as E(x, y, z) = Ẽ(x, y, z)e i kz . Upon substitution of this into the scalar Helmholtz
equation (10.5), we arrive at

∂2Ẽ

∂x2 + ∂2Ẽ

∂y2 +2i k
∂Ẽ

∂z
+ ∂2Ẽ

∂z2 = 0 (10.14)

At this point we make the paraxial wave approximation,5 which is |2k ∂Ẽ
∂z |≫ | ∂2Ẽ

∂z2 |.
That is, we assume that the amplitude of the field varies slowly in the z-direction

5P. W. Milonni and J. H. Eberly, Laser, Sect. 14.4 (New York: Wiley, 1988).
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such that the wave looks much like a plane wave. We permit the amplitude to
change as the wave propagates in the z-direction as long as it does so on a scale
much longer than a wavelength. This leads to the paraxial wave equation:(

∂2

∂x2 + ∂2

∂y2 +2i k
∂

∂z

)
Ẽ(x, y, z) ∼= 0 (paraxial wave equation) (10.15)

It turns out that the Fresnel approximation (10.13) is an exact solution to the
paraxial wave equation (see P10.5). That is, (10.15) is satisfied by

Ẽ(x, y, z) ∼=− i

λz

∞Ï
−∞

Ẽ(x ′, y ′,0)e
i k

2z

[
(x−x′)2+(y−y ′)2

]
d x ′d y ′ (10.16)

When the factor e i kz is appended, this field is identical to (10.13).

Joseph von Fraunhofer (1787–1826,
German) was born in Straubing, Bavaria.
He was orphaned at age 11, whereupon
he was apprenticed to a glassmaker.
The workshop collapsed, trapping him
in the rubble. The Prince of Bavaria di-
rected the rescue efforts and thereafter
took an interest in Fraunhofer’s educa-
tion. The prince required the glassmaker
to allow young Joseph time to study, and
he naturally took an interest in optics.
Fraunhofer later worked at the Opti-
cal Institute at Benediktbeuern, where
he learned techniques for making the
finest optical glass in his day. Fraun-
hofer developed numerous glass recipes
and was expert at creating optical de-
vices. Fraunhofer was the inventor of
the spectroscope, making it possible to
do quantitative spectroscopy. Using his
spectroscope, Fraunhofer was the first
to observe and document hundreds of
absorption lines in the sun’s spectrum.
He also noticed that these varied for dif-
ferent stars, thus establishing the field of
stellar spectroscopy. He was also the in-
ventor of the diffraction grating. In 1822,
he was granted an honorary doctorate
from the University of Erlangen. Fraun-
hofer passed away at age 39, perhaps
due to heavy-metal poisoning from glass
blowing. (Wikipedia)

10.4 Fraunhofer Approximation

An additional approximation to the diffraction integral was made famous by
Joseph von Fraunhofer. The Fraunhofer approximation is the limiting case of
the Fresnel approximation when the field is observed at a distance far after the
aperture (called the far field).6 A diffraction pattern continuously evolves along
the z-direction, as described by the Fresnel approximation. Eventually it evolves
into a final diffraction pattern that maintains itself as it continues to propagate (al-
though it increases its size in proportion to distance). It is this far-away diffraction
pattern that is obtained from the Fraunhofer approximation. Since the Fresnel
approximation requires the angles to be small (i.e. the paraxial approximation),
so does the Fraunhofer approximation.

To obtain the diffraction pattern at a distance very far from the aperture, we
make the following approximation:7

e i k
2z (x ′2+y ′2) ∼= 1 (far field) (10.17)

The validity of this approximation depends on a comparison of the size of the
aperture to the distance z where the diffraction pattern is observed. We need

z ≫ k

2

(
aperture radius

)2 (condition for far field) (10.18)

By removing the factor (10.17) from (10.13), we obtain the Fraunhofer diffrac-
tion formula:

E
(
x, y, z

)∼=− i e i kz e i k
2z (x2+y2)

λz

Ï
aperture

E
(
x ′, y ′,0

)
e−i k

z (xx ′+y y ′)d x ′d y ′(Fraunhofer approximation) (10.19)

6Since the Fraunhofer approximation is easier to use, many textbooks present it before the
Fresnel approximation.

7J. W. Goodman, Introduction to Fourier Optics, p. 61 (New York: McGraw-Hill, 1968).

https://en.wikipedia.org/wiki/Joseph_von_Fraunhofer
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Obviously, the removal of e i k
2z (x ′2+y ′2) from the integrand improves our chances

of being able to perform the integration analytically. In fact the integral can be
interpreted as a two-dimensional (inverse) Fourier transform on the aperture
field E

(
x ′, y ′,0

)
, where kx/z and k y/z can be thought of as ‘spatial frequencies’.

Once we are in the regime where the Fraunhofer approximation is valid, a
change in z is not very interesting since it appears within the integral only in the
combination x/z or y/z. At a larger distance z, the same diffraction pattern is
obtained with a proportionately larger values of x or y . The Fraunhofer diffraction
pattern thus preserves itself indefinitely as the field propagates. It grows in size as
the distance z increases, but the angular size defined by x/z or y/z remains the
same.

Figure 10.9 Fraunhofer diffraction
pattern (field amplitude) gener-
ated by a uniformly illuminated
rectangular aperture with a height
twice the width.

Example 10.4

Compute the Fraunhofer diffraction pattern following a rectangular aperture (di-
mensions ∆x by ∆y) illuminated by a uniform plane wave.

Solution: According to (10.19), the field downstream is

E
(
x, y, z

)=−i E0

e i kz

λz
e i k

2z (x2+y2)
∆x/2∫

−∆x/2

d x ′e−i kx
z x′

∆y/2∫
−∆y/2

d y ′e−i k y
z y ′

It is left as an exercise (see P10.6) to perform the integration and compute the
intensity. The result turns out to be

I
(
x, y, z

)= I0

∆x2∆y2

λ2z2 sinc2
(
π∆x

λz
x

)
sinc2

(
π∆y

λz
y

)
(10.20)

where sinc(ξ) ≡ sinξ/ξ. Note that lim
ξ→0

sinc(ξ) = 1.

10.5 Diffraction with Cylindrical Symmetry

Sometimes the field transmitted by an aperture is cylindrically symmetric. In this
case, the field at the aperture can be written as

E(x ′, y ′, z = 0) = E(ρ′, z = 0) (10.21)

where ρ ≡
√

x2 + y2. Under cylindrical symmetry, the two-dimensional integra-
tion over x ′ and y ′ in (10.13) or (10.19) can be reduced to a single-dimensional
integral over a cylindrical coordinate ρ′. With the coordinate transformation

x ≡ ρ cosφ y ≡ ρ sinφ x ′ ≡ ρ′ cosφ′ y ′ ≡ ρ′ sinφ′ (10.22)

the Fresnel diffraction integral (10.13) becomes

E
(
ρ, z

) =− i e i kz e i kρ2

2z

λz

2π∫
0

dφ′
∫

aperture

ρ′dρ′E
(
ρ′,0

)
e i kρ′2

2z e−i k
z (ρρ′ cosφcosφ′+ρρ′ sinφsinφ′)

(10.23)
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Notice that in the exponent of (10.23) we can write

ρ′ρ
(
cosφ′ cosφ+ sinφ′ sinφ

)= ρ′ρ cos
(
φ′−φ)

(10.24)

With this simplification, the diffraction formula (10.23) can be written as

E
(
ρ, z

)=− i e i kz e i kρ2

2z

λz

∫
aperture

ρ′dρ′E
(
ρ′,0

)
e i kρ′2

2z

2π∫
0

dφ′e−i kρρ′
z cos(φ−φ′) (10.25)

We are able to perform the integration over φ′ with the help of the formula (0.57):

2π∫
0

e−i kρρ′
z cos(φ−φ′)dφ′ = 2πJ0

(
kρρ′

z

)
(10.26)

J0 is called the zero-order Bessel function. Equation (10.25) then reduces to

E
(
ρ, z

)=−2πi e i kz e i kρ2

2z

λz

∫
aperture

ρ′dρ′E
(
ρ′,0

)
e i kρ′2

2z J0

(
kρρ′

z

)
(Fresnel approximation with cylindrical symmetry) (10.27)

The integral in (10.27) is called a Hankel transform on E
(
ρ′,0

)
e i kρ′2

2z .

z = 25/k

z = 75/k

z = 200/k

z = 1000/k

500/k

500/k

500/k

500/k

100/k

Figure 10.10 Field amplitude fol-
lowing a circular aperture com-
puted in the Fresnel approxima-
tion.

In the case of the Fraunhofer approximation, the diffraction integral becomes

a Hankel transform on just the field E
(
ρ′, z = 0

)
since exp

(
i kρ′2

2z

)
goes to one.

Under cylindrical symmetry, the Fraunhofer approximation is

E
(
ρ, z

)=−2πi e i kz e i kρ2

2z

λz

∫
aperture

ρ′dρ′E
(
ρ′,0

)
J0

(
kρρ′

z

)
(Fraunhofer approximation with cylindrical symmetry) (10.28)

Just as fast Fourier transform algorithms aid in the numerical evaluation of diffrac-
tion integrals in Cartesian coordinates, fast Hankel transforms also exist and can
be used with cylindrically symmetric diffraction integrals.

Example 10.5

Compute the Fresnel and Fraunhofer diffraction patterns following a circular
aperture (diameter D) illuminated by a uniform plane wave.

Solution: According to (10.27), the field downstream is

E
(
ρ, z

)=−i E0

2πe i kz e i kρ2

2z

λz

D/2∫
0

ρ′dρ′e i kρ′2
2z J0

(
kρρ′

z

)

Unfortunately, this Fresnel integral must be performed numerically. The result
of the calculation for a uniform field illuminating a circular aperture is shown in
Fig. 10.10.
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On the other hand, the field in the Fraunhofer limit (10.28) is

E
(
ρ, z

)=−i E0

2πe i kz e i kρ2

2z

λz

D/2∫
0

ρ′dρ′ J0

(
kρρ′

z

)

which can be integrated analytically (with the aid of (0.58)). It is left as an exercise
to perform the integration and to show that the intensity of the Fraunhofer pattern
is

I
(
ρ, z

)= I0

(
πD2

4λz

)2 [
2

J1
(
kDρ/2z

)(
kDρ/2z

) ]2

(10.29)

The function 2J1(ξ)
ξ , which we will call the jinc function,8 looks similar to the sinc

function (see Example 10.4) except that its first zero is at ξ= 1.22π rather than at π.
Note that lim

ξ→0

2J1(ξ)
ξ = 1.



Figure 10.11 Fraunhofer diffrac-
tion pattern (field amplitude) gen-
erated for a uniformly illuminated
circular aperture.

Appendix 10.A Fresnel-Kirchhoff Diffraction Formula

To begin the derivation of the Fresnel-Kirchhoff diffraction formula,9 we employ
Green’s theorem (proven in appendix 10.B):∮

S

[
U
∂V

∂n
−V

∂U

∂n

]
d a =

∫
V

[
U∇2V −V ∇2U

]
d v (10.30)

The notation ∂/∂n implies a derivative in the direction normal to the surface. We
choose the following functions:

V ≡ e i kr /r

U ≡ E (r)
(10.31)

where E (r) is assumed to satisfy the scalar Helmholtz equation, (10.5). When
these functions are used in Green’s theorem (10.30), we obtain∮

S

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a =

∫
V

[
E∇2 e i kr

r
− e i kr

r
∇2E

]
d v (10.32)

The right-hand side of this equation vanishes10 since we have

E∇2 e i kr

r
− e i kr

r
∇2E =−k2E

e i kr

r
+ e i kr

r
k2E = 0 (10.33)

8Most authors define the jinc without the factor of 2, which gives the inconvenient normalization
lim
ξ→0

jinc(ξ) = 1/2.

9See J. W. Goodman, Introduction to Fourier Optics, Sect. 3-3 (New York: McGraw-Hill, 1968).
10We exclude the point r = 0; see P0.4 and P0.5.
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where we have taken advantage of the fact that E (r) and e i kr /r both satisfy (10.5).
This is exactly the reason for our judicious choices of the functions V and U since
with them we were able to make half of (10.30) disappear. We are left with∮

S

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a = 0 (10.34)

Now consider a volume between a small sphere of radius ϵ at the origin and an
outer surface of arbitrary shape. The total surface that encloses the volume is
comprised of two parts (i.e. S = S1 +S2 as depicted in Fig. 10.12).

Figure 10.12 A two-part surface
enclosing volume V .

When we apply (10.34) to the surface in Fig. 10.12, we have∮
S2

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a =−

∮
S1

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a (10.35)

This geometry with multiple surfaces is motivated by the hope of finding the field
at the origin (inside the little sphere) from knowledge of the field on the outside
surface. To this end, we assume that ϵ is so small that E (r) is approximately the
same everywhere on the surface S1. Then the integral over S1 becomes

∮
S1

[
E
∂

∂n

ei kr

r
− ei kr

r

∂E

∂n

]
d a = lim

r=ϵ→0

2π∫
0

dφ

π∫
0

[
E

(
∂

∂r

ei kr

r

)
∂r

∂n
− ei kr

r

(
∂E

∂r

)
∂r

∂n

]
r 2 sinθdθ

(10.36)

where we have used spherical coordinates. Notice that we have employed the
chain rule to execute the normal derivative ∂/∂n. Since r always points opposite
to the direction of the surface normal n̂, the normal derivative ∂r /∂n is always
equal to −1.11 We can perform the angular integration in (10.36) as well as take
the limit ϵ→ 0:

lim
ϵ→0

∮
S1

[
E
∂

∂n

e i kr

r
− e i kr

r

∂E

∂n

]
d a =−4π lim

ϵ→0

[
r 2

(
−e i kr

r 2 + i k
e i kr

r

)
E − r 2 e i kr

r

(
∂E

∂r

)]
r=ϵ

=−4π lim
ϵ→0

[(
−e i kϵ+ i kϵe i kϵ

)
E −e i kϵϵ

(
∂E

∂r

)
r=ϵ

]
= 4πE (0)

(10.37)

With the aid of (10.37), Green’s theorem applied to our specific geometry
reduces to

E (0) = 1

4π

∮
S2

[
e i kr

r

∂E

∂n
−E

∂

∂n

e i kr

r

]
d a (10.38)

If we know E everywhere on the outer surface S2, this equation allows us to predict
the field E (0) at the origin.

11From the definition of the normal derivative we have ∂r /∂n ≡∇r · n̂ =−n̂ · n̂ =−1.
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Now let us choose a specific surface S2. Consider an infinite mask with a
finite aperture connected to a hemisphere of infinite radius R →∞. In the end,
we will suppose that light enters through the mask and propagates to our origin
(among other points). In our present coordinate system, the vectors r and n̂ point
opposite to the incoming light.

origin

mask

aperture

Figure 10.13 Surface S2 depicted
as a mask and a large hemisphere.

We must evaluate (10.38) on the surface depicted in the figure. For the portion
of S2 that is on the hemisphere, the integrand tends to zero as R becomes large.
To argue this, it is necessary to recognize the fact that at large distances the field
takes on a form proportional to e i kr /r so that the two terms in the integrand
cancel. On the mask, we assume, as did Kirchhoff, that both ∂E/∂n and E are
zero.12 Thus, we are left with only the integration over the open aperture:

E (0) = 1

4π

Ï
aperture

[
e i kr

r

∂E

∂n
−E

∂

∂n

e i kr

r

]
d a (10.39)

We have essentially arrived at the result that we are seeking. The field coming
through the aperture is integrated to find the field at the origin, which is located
beyond the aperture. Let us manipulate the formula a little further. The second
term in the integral of (10.39) can be rewritten as follows:

∂

∂n

e i kr

r
=

(
∂

∂r

e i kr

r

)
∂r

∂n
=

(
i k

r
− 1

r 2

)
e i kr cos(r, n̂) →

r≫λ

i ke i kr

r
cos(r, n̂) (10.40)

where ∂r /∂n = cos(r, n̂) indicates the cosine of the angle between r and n̂. We
have also assumed that the distance r is much larger than a wavelength in order
to drop a term. Next, we assume that the field illuminating the aperture can be
written as E ∼= Ẽ

(
x, y

)
e i kz . This represents a plane-wave field traveling through

the aperture from left to right. Then, we have

∂E

∂n
= ∂E

∂z

∂z

∂n
= i kẼ

(
x, y

)
e i kz (−1) =−i kE (10.41)

Substituting (10.40) and (10.41) into (10.39) yields

E (0) =− i

λ

Ï
aperture

E
e i kr

r

[
1+cos(r, n̂)

2

]
d a (10.42)

Finally, we wish to rearrange our coordinate system to that depicted in Fig. 10.2.
In our derivation, it was less cumbersome to place the origin at a point of interest
after the aperture. Now that we have completed our mathematics, we can switch

12Later Sommerfeld noticed that these two assumptions actually contradict each other, and he
revised Kirchhoff’s work to be more accurate. In practice this revision makes only a tiny difference
as light spills onto the back of the aperture, over a length scale of a wavelength. We will ignore
this effect and go with Kirchhoff’s (slightly flawed) assumption. For further discussion see J. W.
Goodman, Introduction to Fourier Optics, Sect. 3-4 (New York: McGraw-Hill, 1968).
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around the coordinate system and place the origin in the plane of the aperture as
in Fig. 10.2:

E
(
x, y, z

)=− i

λ

Ï
aperture

E
(
x ′, y ′,0

) e i kR

R

[
1+cos(r, ẑ)

2

]
d x ′d y ′ (10.43)

where

R =
√

(x −x ′)2 + (
y − y ′)2 + z2 (10.44)

which brings us to the Fresnel-Kirchhoff diffraction formula (10.10).

Appendix 10.B Green’s Theorem

To derive Green’s theorem, we begin with the divergence theorem (see (0.11)):∮
S

f · n̂ d a =
∫
V

∇· f d v (10.45)

The unit vector n̂ always points normal to the surface of volume V over which
the integral is taken. Let the vector function f be U∇V , where U and V are both
analytical functions of the position coordinate r. Then (10.45) becomes∮

S

(U∇V ) · n̂ d a =
∫
V

∇· (U∇V ) d v (10.46)

We recognize ∇V · n̂ as the directional derivative of V , directed along the surface
normal n̂. This is often represented in shorthand notation as

∇V · n̂ ≡ ∂V

∂n
(10.47)

The integrand on the right-hand side of (10.46) can be expanded with the product
rule:

∇· (U∇V ) =∇U ·∇V +U∇2V (10.48)

With these substitutions, (10.46) becomes∮
S

U
∂V

∂n
d a =

∫
V

[∇U ·∇V +U∇2V
]

d v (10.49)

So far we haven’t done much. Equation (10.49) is nothing more than the diver-
gence theorem applied to the vector function U∇V . We can also write an equation
similar to (10.49) where U and V are interchanged:∮

S

V
∂U

∂n
d a =

∫
V

[∇V ·∇U +V ∇2U
]

d v (10.50)

We subtract (10.50) from (10.49), which leads to (10.30) known as Green’s theorem.
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Exercises

Exercises for 10.1 Huygens’ Principle as Formulated by Fresnel

Figure 10.14

P10.1 Huygens’ principle can be used to describe refraction. Use a draw-
ing program or a ruler and compass to produce a picture similar to
Fig. 10.14, which shows that the graphical prediction of refracted angle
from the Huygens’ principle. Verify that the Huygens picture matches
the numerical prediction from Snell’s Law for an incident angle of your
choice. Use ni = 1 and nt = 2.

HINT: Draw the wavefronts hitting the interface at an angle and treat
each point where the wavefronts strike the interface as the source of
circular waves propagating into the n = 2 material. The wavelength of
the circular waves must be exactly half the wavelength of the incident
light since λ=λvac/n. Use at least four point sources and connect the
matching wavefronts by drawing tangent lines as in the figure.

L10.2 (a) Why does the on-axis intensity behind a circular opening fluctuate
(see Example 10.1) whereas the on-axis intensity behind a circular
obstruction remains constant (see Example 10.2)?

(b) Create a collimated laser beam several centimeters wide. Observe
the on-axis intensity on a movable screen (e.g. a hand-held card) be-
hind a small circular aperture and behind a small circular obstruction
placed in the beam. (video)

(c) In the case of the circular aperture, measure the distance to several
on-axis minima and check that it agrees with (10.3).

Laser

Figure 10.15

Exercises for 10.2 Scalar Diffraction Theory

P10.3 Show that E (r ) = E0r0e i kr /r is a solution to the scalar Helmholtz equa-
tion (10.5).

https://vimeo.com/717097223
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HINT: In spherical coordinates

∇2ψ= 1

r

∂2

∂r 2

(
rψ

)+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+ 1

r 2sin2θ

∂2ψ

∂φ2

P10.4 (a) A vector field is needed to satisfy Maxwell’s equations instead of the
scalar field in P10.3, whose real part after appending e−iωt is

E(r ) = A

r
cos(kr −ωt )

Let’s attempt to create a vector field from this scalar field in the simplest
way possible. From experience, we expect a transverse wave, which we
take to oscillate in the φ̂ direction:

E(r ) = A

r
cos(kr −ωt ) φ̂

(i) Show that E satisfies Gauss’s Law (1.1). (ii) Compute the curl of E in
Faraday’s Law (1.3) to deduce B. (iii) Show that this B satisfies Gauss’
Law for magnetism (1.2). (iv) Finally, show that the above E and B do
not satisfy Ampere’s law (1.4).

HINT: In spherical coordinates

∇·E = 1

r 2

∂

∂r

(
r 2Er

)+ 1

r sinθ

∂

∂θ
(sinθEθ)+ 1

r sinθ

∂Eφ
∂φ

∇×E = r̂
1

r sinθ

[
∂

∂θ

(
sinθEφ

)− ∂Eθ
∂φ

]
+ θ̂ 1

r

[
1

sinθ

∂Er

∂φ
− ∂

∂r

(
r Eφ

)]
+φ̂1

r

[
∂

∂r
(r Eθ)− ∂Er

∂θ

]
(b) The following somewhat more complicated ‘spherical’ wave

E(r,θ) = A sinθ

r

[
cos(kr −ωt )− 1

kr
sin(kr −ωt )

]
φ̂

(i.e. the real part of (10.9) with time dependence appended) does satisfy
Maxwell’s equations. Describe how this wave behaves as a function of
r and θ. What conditions need to be satisfied for this equation to be
well approximated by the spherical wave in part (a)?

Exercises for 10.3 Fresnel Approximation

P10.5 By direct substitution, show that (10.16) satisfies the paraxial wave
equation (10.15).
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Exercises for 10.4 Fraunhofer Approximation

Figure 10.16 “The Fraunhofer Ap-
proximation” by Sterling Cornaby

P10.6 Calculate the Fraunhofer diffraction field and intensity patterns for a
rectangular aperture (dimensions ∆x by ∆y) illuminated by a plane
wave E0. In other words, derive (10.20).

P10.7 A single narrow slit has a mask placed over it so the aperture function
is not a square profile but rather a cosine: E(x ′, y ′,0) = E0 cos(πx ′/L)
for −L/2 < x ′ < L/2 and E (x ′, y ′,0) = 0 otherwise. Calculate the far-field
(Fraunhofer) diffraction pattern. Make a plot of intensity as a function
of kLx/2z; qualitatively compare the pattern to that of a regular single
slit. Do not perform any integration in the y dimension. Write the
intensity as being proportional to an x-dependent expression.

Exercises for 10.5 Diffraction with Cylindrical Symmetry

P10.8 (a) Repeat Example 10.1 to find the on-axis intensity (i.e. ρ = 0) after
a circular aperture in both the Fresnel approximation (10.27) and the
Fraunhofer approximation (10.28).

(b) Make suitable approximations directly to (10.3) to obtain the same
answers as in part (a).

(c) Check how well the Fresnel and Fraunhofer approximations work by
graphing the Fresnel- and Fraunhofer-approximation results together
with (10.3) on a single plot as a function of z. Take D = 10 µm and
λ= 500 nm. To see the result better, use a log scale on the z-axis.
Answer:

z (mm)
10

-3
10

-2
10

-1
10

0
0

1

2

3

4

Fraunhofer 
Approximation

Fresnel
Approx.

Huygens-Fresnel

Figure 10.17 On-axis intensity behind a circular aperture calculated using
the Fresnel diffraction formula (10.1), the Fresnel approximation (10.27),
and the Fraunhofer approximation (10.28).

P10.9 Calculate the Fraunhofer diffraction intensity pattern (10.29) for a cir-
cular aperture (diameter D) illuminated by a plane wave E0. That is,
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repeat example 10.5 while filling in the integration step. For added
benefit, try to do it without peeking.

Exercises for 10.A Fresnel-Kirchhoff Diffraction Formula

P10.10 Learn by heart the derivation of the Fresnel-Kirchhoff diffraction for-
mula (outlined in Appendix 10.A). Indicate the percentage of how well
you understand the derivation. If you write 100% percent, it means
that you can reproduce the derivation without peeking.



Chapter 11

Diffraction Applications

In this chapter, we consider a number of practical examples of diffraction. We first
discuss diffraction theory in systems involving lenses. The Fraunhofer diffraction
pattern discussed in section 10.4, applicable in the far-field limit, is imaged
to the focus of a lens when the lens is placed in the stream of light. This has
important implications for the resolution of instruments such as telescopes or
grating spectrometers.

The array theorem, which applies to the Fraunhofer limit, is introduced in
section 11.3. This theorem is a powerful mathematical tool that enables one to
deal conveniently with diffraction from an array of identical apertures. One of
the important uses of the array theorem is in determining Fraunhofer diffraction
from a grating, since a diffraction grating can be thought of as an array of narrow
slit apertures. In section 11.5, we study the workings of a diffraction spectrometer
and explore resolution limitations.

Finally, we consider a Gaussian laser beam to understand its focusing and
diffraction properties. The information presented here comes up remarkably
often in research activity. We often think of lasers as collimated beams of light
that propagate indefinitely without expanding. However, the laws of diffraction
require that every finite beam eventually grows in width. The rate at which a laser
beam diffracts depends on its beam waist size. Because laser beams usually have
narrow divergence angles and therefore obey the paraxial approximation, we can
calculate their behavior via the Fresnel approximation discussed in section 10.3.
Appendix 11.A discusses the ABCD law for Gaussian beams, which is a method
of computing the effects of optical elements such as lenses on laser beams. The
ABCD law arbitrates the competition between beam expansion via diffraction
and beam focusing from traversing a lens.

11.1 Fraunhofer Diffraction with a Lens

The Fraunhofer limit corresponds to the ultimate amount of diffraction that
light in an optical system experiences. As has been previously discussed, the
Fraunhofer approximation applies to diffraction when the propagation distance

277
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from an aperture is sufficiently large (see (10.18) and (10.19)). Mathematically, it
is obtained via a two-dimensional Fourier transform. The intensity of the far-field
diffraction pattern is

I
(
x, y, z

)= 1

2
cϵ0

∣∣∣∣∣∣ 1

λz

Ï
aperture

E
(
x ′, y ′,0

)
e−i k

(
x
z x ′+ y

z y ′)
d x ′d y ′

∣∣∣∣∣∣
2

(11.1)

Notice that the dependence of the diffraction on x, y , and z comes only
through the combinations θx

∼= x/z and θy
∼= y/z. Therefore, the diffraction

pattern in the Fraunhofer limit is governed by the two angles θx and θy , and
the pattern preserves itself indefinitely. As the light continues to propagate, the
pattern increases in size at a rate proportional to distance traveled so that the
angular width is preserved. The situation is depicted in Fig. 11.1.

Figure 11.1 Diffraction in the far
field.

Recall that in order to use the Fraunhofer diffraction formula we need to
satisfy z ≫ π

(
aperture radius

)2/λ (see (10.18)). As an example, if an aperture
with a 1 cm radius (not necessarily circular) is used with visible light, the light
must travel more than a kilometer in order to reach the Fraunhofer limit. It
may therefore seem unlikely to reach the Fraunhofer limit in a typical optical
system, especially if the aperture or beam size is relatively large. Nevertheless,
spectrometers, which typically utilize diffraction gratings many centimeters wide,
depend on achieving the Fraunhofer limit within the confines of a manageable
instrument box. This is accomplished using imaging techniques. The Fraunhofer
limit is also naturally reached in other instruments that employ lenses such as
telescopes.

Consider a lens with focal length f placed in the path of light following an
aperture (see Fig. 11.2). Let the lens be placed an arbitrary distance L after the
aperture. The lens produces an image of the Fraunhofer pattern at a new location
di following the lens according to the imaging formula (see (9.56))

1

f
= 1

− (z −L)
+ 1

di
. (11.2)

Keep in mind that the lens interrupts the light before the Fraunhofer pattern
has a chance to form. This means that the Fraunhofer diffraction pattern may

  

Image of the pattern that
would have appeared at
infinity

Figure 11.2 Imaging of the Fraunhofer diffraction pattern to the focus of a lens.
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be thought of as a virtual object a distance z −L to the right of the lens. Since
the Fraunhofer diffraction pattern occurs at very large distances (i.e. z →∞) the
image of the Fraunhofer pattern appears at the focus of the lens:

di
∼= f . (11.3)

Thus, a lens makes it very convenient to observe the Fraunhofer diffraction pat-
tern even from relatively large apertures. It is not necessary to let the light propa-
gate for kilometers. We need only observe the pattern at the focus of the lens as
shown in Fig. 11.2. Notice that the spacing L between the aperture and the lens is
unimportant to this conclusion.

Even though we know that the Fraunhofer diffraction pattern occurs at the
focus of a lens, the question remains as to the size of the image. To find the answer,
let us examine the magnification (9.57), which is given by

M =− di

− (z −L)
(11.4)

Taking the limit of very large z and employing (11.3), the magnification becomes

M → f

z
(11.5)

This is a remarkable result. When the lens is inserted, the size of the diffraction
pattern decreases by the ratio of the lens focal length f to the original distance
z to a far-away screen. Since in the Fraunhofer regime the diffraction pattern is
proportional to distance (i.e. size ∝ z), the image at the focus of the lens scales in
proportion to the focal length (i.e. size ∝ f ). This means that the angular width of
the pattern is preserved! With the lens in place, we can rewrite (11.1) straightaway
as

I
(
x, y,L+ f

)∼= 1

2
cϵ0

∣∣∣∣∣∣ 1

λ f

Ï
aperture

E
(
x ′, y ′,0

)
e−i k

f (xx ′+y y ′)d x ′d y ′
∣∣∣∣∣∣
2

(11.6)

which describes the intensity distribution pattern at the focus of the lens.
Although (11.6) correctly describes the intensity at the focus of a lens, we

cannot easily write the electric field since the imaging techniques that we have
used do not easily render the phase information. To obtain an expression for
the field, it will be necessary to employ the Fresnel diffraction formula, which
we accomplish in the remainder of this section. Before doing so, we will need to
know how a lens adjusts the phase fronts of the light passing through it.

Phase Front Alteration by a Lens

Consider a monochromatic light field that goes through a thin lens with focal
length f . In traversing the lens, the wavefront undergoes a phase shift that varies
across the lens. We will reference the phase shift to that experienced by the light
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that goes through the center of the lens. We take the distances ℓ1 and ℓ2, as drawn
in Fig. 11.3, to be positive.

Figure 11.3 A thin lens, which
modifies the phase of a field pass-
ing through.

The light passing through the off-axis portion of the lens experiences less material
than the light passing through the center. The difference in optical path length is
(n −1)(ℓ1 +ℓ2) (see discussion connected with (9.13)). This means that the phase
of the field passing through the off-axis portion of the lens relative to the phase of
the field passing through the center is

∆φ=−k (n −1)(ℓ1 +ℓ2) . (11.7)

The negative sign indicates a phase advance (i.e. same sign as −ωt). In (11.7), k
represents the wave number in vacuum (i.e. 2π/λvac); since ℓ1 and ℓ2 correspond
to distances outside of the lens material.

We can find expressions for ℓ1 and ℓ2 from the equations describing the spherical
surfaces of the lens:

(R1 −ℓ1)2 +x2 + y2 = R2
1

(R2 +ℓ2)2 +x2 + y2 = R2
2

(11.8)

As drawn in Fig. 11.3, R1 is a positive radius of curvature while R2 is negative, in ac-
cordance with conventions in chapter 9. In the spirit of the Fresnel approximation,
which takes place in the paraxial limit, it is appropriate to neglect the terms ℓ2

1 and
ℓ2

2 in comparison to other terms present in (11.8). Within this approximation, the
equations become

ℓ1
∼= x2 + y2

2R1
and ℓ2

∼=−x2 + y2

2R2
(11.9)

Substitution into (11.7) yields

∆φ=−k (n −1)

(
1

R1
− 1

R2

) (
x2 + y2

)
2

=− k

2 f

(
x2 + y2) (11.10)

where the focal length of a thin lens f has been introduced according to the lens-
maker’s formula (9.46).

In summary, the light traversing a lens experiences a relative phase shift given by

E
(
x, y, zafter lens

)= E
(
x, y, zbefore lens

)
e−i k

2 f (x2+y2) (11.11)

Equation (11.11) introduces a wavefront curvature to the field. For example, if a
plane wave (i.e. a uniform field E0) passes through the lens, the field emerges with
a spherical-like wavefront converging towards the focus of the lens.

Figure 11.4 The phase fronts of a
plane wave are bent as they pass
through a lens. We compute the diffraction pattern after the lens in three steps, as illustrated

in Fig. 11.5. First, we use the Fresnel approximation to compute the field arriving
at the lens. Second, we adjust the phase front of the light passing through the
lens according to (11.11). Third, we use the field exiting the lens as the input for a
second diffraction integral to find the field at the lens focus. The result gives an
intensity pattern in agreement with (11.6) without ever employing the Fraunhofer
approximation. It also provides the full expression for the field, including its
phase.
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Starting from the known field E
(
x ′, y ′,0

)
at the aperture, we compute the field

incident on the lens using the Fresnel approximation:

E(x ′′, y ′′,L) =−i
e i kLe i k

2L (x ′′2+y ′′2)

λL

Ï
E(x ′, y ′,0)e i k

2L (x ′2+y ′2)e−i k
L (x ′′x ′+y ′′y ′)d x ′d y ′

(11.12)
(The double primes keep track of distinct variables in sequential diffraction
integrals.) As mentioned, the field gains a phase factor according to (11.11) upon
transmitting through the lens. Finally, we use the Fresnel diffraction formula a
second time to propagate the distance f from the back of the thin lens:

E
(
x, y,L+ f

)=−i
e i k f e i k

2 f (x2+y2)

λ f

Ï [
E(x ′′, y ′′,L)e−i k

2 f (x ′′2+y ′′2)
]

×e i k
2 f (x ′′2+y ′′2)e−i k

f (xx ′′+y y ′′)d x ′′d y ′′ (11.13)

Figure 11.5 Diffraction from an
aperture viewed at the focus of a
lens.

Right off, by choosing the propagation distance to be f , we get a nice cancel-
lation of the phase factor introduced by the lens. Even so, as you can probably
appreciate, the installation of (11.12) into (11.13) makes a rather long formula
involving four dimensions of integration. Nevertheless, two of the integrals can
be performed in advance of choosing the aperture (i.e. those over x ′′ and y ′′). This
is accomplished with the help of the integral formula (0.55) (even though in this
instance the real part of a is zero). After this cumbersome work, (11.13) reduces
to

E
(
x, y,L+ f

)=−i
e i k(L+ f )e i k

2 f (x2+y2)e
−i kL

2 f 2 (x2+y2)

λ f

Ï
E(x ′, y ′,0)e−i k

f (xx′+y y ′)d x ′d y ′

(11.14)

Notice that at least the integration portion of this formula looks exactly like
the Fraunhofer diffraction formula! This happened even though in the preceding
discussion we did not at any time specifically make the Fraunhofer approximation.
The result (11.14) implies the intensity distribution (11.6) as anticipated. However,
the phase of the field is also revealed in (11.14).

In general, the field carries a wavefront curvature as it passes through the
focal plane of the lens. In the special case L = f , the diffraction formula takes a
particularly simple form:

E(x ′, y ′,L+ f )
∣∣
L= f =−i

e2i k f

λ f

Ï
E(x ′, y ′,0)e−i k

f (xx ′+y y ′)d x ′d y ′ (11.15)

When the lens is placed at this special distance following the aperture, the Fraun-
hofer diffraction pattern viewed at the focus of the lens carries a flat wavefront.

11.2 Resolution of a Telescope

In the previous section we learned that the Fraunhofer diffraction pattern appears
at the focus of a lens. This has important implications for telescopes and other
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optical instruments. In essence, any optical instrument incorporates an aperture,
limiting the light that enters. If nothing else, the diameter of a lens itself acts
effectively as an aperture. The pupil of the human eye is an aperture that causes a
Fraunhofer diffraction pattern to occur at the retina. Cameras have irises control
the light entering the camera, again giving rise to a Fraunhofer diffraction pattern
at the image plane.

Of course, the focus of the lens is just where one wants to look in order to see
images of distant objects. Of course, the Fraunhofer pattern, which occurs at the
focus, represents the ultimate amount of diffraction caused by an aperture. This
has the effect of blurring out features in the image and limiting resolution. This
illustrates why it is impossible to focus light to a true point.

Figure 11.6 To resolve distinct im-
ages at the focus of a lens, the an-
gular separation must exceed the
width of the Fraunhofer diffraction
patterns.

Suppose you point a telescope at two distant stars. An image of each star is
formed in the focal plane of the lens. The angular separation between the two
images (referenced from the lens) is the same as the angular separation between
the stars.1 This is depicted in Fig. 11.6. For reference, we are speaking of the image
that forms between the objective lens and the eyepiece of a telescope, as seen in
Fig. 9.15. Often, a CCD camera is placed at that image plane so that there is no
need for an eyepiece.

A resolution problem occurs when the Fraunhofer diffraction pattern asso-
ciated with each star causes them to blur by more than the angular separation
between them. In this case the two images cannot be resolved because they
‘bleed’ into one another.

40
0

0

1

-1

1

2 3

Figure 11.7 (a) First-order Bessel
function. (b) Square of the Jinc
function.

The Fraunhofer diffraction pattern from a circular aperture was computed
previously (see (10.29)). At the focus of a lens, this pattern centered on each star
becomes

I
(
ρ, f

)= I0

(
πD2

4λ f

)2 [
2

J1
(
kDρ/2 f

)(
kDρ/2 f

) ]2

(11.16)

where f , the focal length of the lens, takes the place of z in the diffraction formula.
The parameter D is the diameter of the lens. This intensity pattern contains the
first-order Bessel function J1, which behaves somewhat like a sine wave as seen in
Fig. 11.7. The main differences are that the zero crossings are not exactly periodic
and the function slowly diminishes with larger arguments. The first zero crossing
(after the origin) occurs at 1.22π.

The intensity pattern described by (11.16) contains the factor 2J1 (ξ)/ξ (which
we call the jinc2), where ξ represents the combination kDρ/2 f . As noticed in
Fig. 11.7, J1 (ξ) goes to zero at ξ = 0. Thus, we have a zero-divided-by-zero sit-
uation similar to the sinc function (i.e. sin(ξ)/ξ), which approaches one at the
origin. The square of the jinc, shown in Fig. 11.7b, is proportional to the intensity

1In the thin-lens approximation, the ray from either star that traverses the center of the lens (i.e.
y = 0) maintains its angle: [

0
θ2

]
=

[
1 0

−1/ f 1

][
0
θ1

]
=

[
0
θ1

]
2often defined without the factor of 2
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described in (11.16). This pattern is sometimes called an Airy pattern after Sir
George Biddell Airy (English, 1801–1892) who first described the pattern. As can
be seen in Fig. 11.7b, the intensity quickly drops at larger radii.

We now return to the question of whether the images of two nearby stars
as depicted in Fig. 11.6 can be distinguished. Since the peak in Fig. 11.7b is the
dominant feature in the diffraction pattern, we will say that the two stars are
resolved if the angle between them is enough to keep the diffracted versions of
their images from seriously overlapping. We will adopt the criterion suggested by
Lord Rayleigh that the peaks are distinguishable if the peak of one pattern is no
closer than the first zero to the other peak. This situation is shown in Fig. 11.8.

The angle that corresponds to this separation of diffraction patterns is found
by setting the argument of (11.16) equal to 1.22π, the location of the first zero:

kDρ

2 f
= 1.22π (11.17)

With a little rearranging we have

θmin
∼= ρ

f
= 1.22λ

D
(11.18)

Here we have associated the ratio ρ/ f (i.e. the radius of the diffraction pattern
compared to the distance from the lens) with an angle θmin. Again, the angle
between the images (referenced from the lens) and the angle between the ob-
jects is the same. The Rayleigh criterion requires that the diffraction patterns be
separated by at least this angle before we say that they are resolved.

θmin depends on the diameter of the lens D as well as on the wavelength of
the light. This analysis assumes that the light from the two objects is incoherent,
meaning the intensities in the image plane add; interferences between the two
fields fluctuate rapidly in time and average away.

Figure 11.8 The Rayleigh criterion
for a circular aperture.

Example 11.1

What minimum telescope-lens diameter is required to distinguish a Jupiter-like
planet (orbital radius 8×108 km) from its star if they are 10 light-years away?

Solution: From (11.18) and assuming 500 nm light, we need

D > 1.22λ

θmin

= 1.22(500×10−9m)

(8×1011m)/(10ly)
× 9.5×1015m

ly
= 0.07m

This seems like a piece of cake; a telescope with a diameter bigger than 7cm will
do the trick. However, the vastly unequal brightness of the star and the planet is
the real technical challenge. The diffraction rings in the star’s diffraction pattern
completely swamp the faint signal from the planet.
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11.3 The Array Theorem

In this section we develop the array theorem, which is used for calculating the
Fraunhofer diffraction from an array of N identical apertures. We will be using
the theorem to compute diffraction from a grating, which may be thought of as a
mask with many closely spaced identical slits. However, the array theorem can be
applied to apertures with any shape and configuration, as suggested by Fig. 11.9.

Figure 11.9 Array of identical aper-
tures.

Consider N apertures in a mask, each with the identical field distribution
described by Eaperture(x ′, y ′,0). Each identical aperture has a unique location on
the mask. Let the location of the nth aperture be designated by the coordinates(
x ′

n , y ′
n

)
. The field associated with the nth aperture is then Eaperture(x ′−x ′

n , y ′−y ′
n ,0),

where the offset in the arguments shifts the location of the aperture. The field
comprising all of the identical apertures is

E
(
x ′, y ′,0

)= N∑
n=1

Eaperture(x ′−x ′
n , y ′− y ′

n ,0) (11.19)

We next compute the Fraunhofer diffraction pattern for the above field. Upon
inserting (11.19) into the Fraunhofer diffraction formula (10.19) we obtain

E
(
x, y, z

)=−i
e i kz e i k

2z (x2+y2)

λz

N∑
n=1

∞∫
−∞

d x ′
∞∫

−∞
d y ′Eaperture

(
x ′−x ′

n , y ′− y ′
n ,0

)
e−i k

z (xx′+y y ′)

(11.20)

where we have taken the summation out in front of the integral. We have also
integrated over the entire (infinitely wide) mask, taking Eaperture to be zero except
inside each aperture.

Even without yet choosing the shape of the identical apertures, we can make
some progress on (11.20) with the change of variables x ′′ ≡ x ′−x ′

n and y ′′ ≡ y ′−y ′
n :

E
(
x, y, z

)=−i
e i kz e i k

2z (x2+y2)

λz

N∑
n=1

∞∫
−∞

d x ′′
∞∫

−∞
d y ′′Eaperture

(
x ′′, y ′′,0

)
×e−i k

z [x(x ′′+x ′
n)+y(y ′′+y ′

n)]

(11.21)
Next we pull the factor exp{−i k

z (xx ′
n + y y ′

n)} out in front of the integral to arrive
at our final result:

E
(
x, y, z

)= [
N∑

n=1
e−i k

z (xx ′
n+y y ′

n)
]

×
−i

e i kz e i k
2z (x2+y2)

λz

∞∫
−∞

d x ′
∞∫

−∞
d y ′Eaperture

(
x ′, y ′,0

)
e−i k

z (xx ′+y y ′)


(11.22)

For the sake of elegance, we have traded back x ′ for x ′′ and y ′ for y ′′ as the
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variables of integration. Equation (11.22) is known as the array theorem.3 Note
that the second factor in brackets is exactly the Fraunhofer diffraction pattern
from a single aperture centered on x ′ = 0 and y ′ = 0. When more than one
identical aperture is present, we only need to evaluate the Fraunhofer diffraction
formula for a single aperture. Then, the single-aperture result is multiplied by the
summation in front, which contains entirely the information about the placement
of the multiple identical apertures.

Figure 11.10 Fraunhofer diffrac-
tion pattern from two identical
circular holes separated by twice
their diameters.

Example 11.2

Calculate the Fraunhofer diffraction pattern for two identical circular apertures
with diameter D whose centers are separated by a spacing h.

Solution: As computed previously, the single-slit Fraunhofer diffraction pattern
from a circular aperture is given by (10.29). This is multiplied by (the square of) the
factor on the first line of the array theorem (11.22), which gives an overall intensity
pattern of

I
(
x, y, z

)= ∣∣∣∣∣ 2∑
n=1

e−i k
z (xx′

n+y y ′
n)

∣∣∣∣∣
2

× I0

(
πD2

4λz

)2 [
2

J1
(
kDρ/2z

)(
kDρ/2z

) ]2

Let y ′
1 = y ′

2 = 0. To create the separation h, let x ′
1 =−h/2 and x ′

2 = h/2. Then

2∑
n=1

e−i k
z (xx′

n+y y ′
n) = e

−i k
z

(
− hx

2

)
+e

−i k
z

(
hx
2

)
= 2cos

(
khx

2z

)
The overall pattern then becomes

I
(
x, y, z

)= I0

(
πD2

2λz

)2 [
2

J1
(
kDρ/2z

)(
kDρ/2z

) ]2

cos2
(

khx

2z

)
This pattern can be seen in Fig. 11.10.

3A somewhat abstract alternative route to the array theorem recognizes that the field for
each aperture can be written as a 2-D convolution (see P0.26) between the aperture function
Eaperture

(
x′, y ′,0

)
and delta functions specifying the aperture location:

Eaperture

(
x′−x′

n , y ′−x′
n ,0

)= ∞∫
−∞

d x′
∞∫

−∞
d y ′δ

(
x′′−x′

n
)
δ

(
y ′′−x′

n
)

Eaperture

(
x′−x′′, y ′− y ′′,0

)
The integral in (11.20) therefore may be viewed as a 2-D Fourier transform of a convolution, where
kx/z and k y/z play the role of spatial frequencies. The convolution theorem (see P0.26) indicates
that this is the same as the product of Fourier transforms. The 2-D Fourier transform for the delta
function (times 2π) is

∞∫
−∞

d x′′
∞∫

−∞
d y ′′δ

(
x′′−x′

n
)
δ

(
y ′′− y ′n

)
e−i k

z (xx′′+y y ′′) = e−i k
z (xx′

n+y y ′
n )

The array theorem (11.22) exhibits this factor. It multiplies the single-slit Fraunhofer diffraction
integral, which is the Fourier transform of the other function.
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11.4 Diffraction Grating

In this section we will use the array theorem to calculate the Fraunhofer diffraction
from a grating comprised of an array of equally spaced identical slits. An array of
uniformly spaced slits is called a transmission grating (see Fig. 11.11). Reflection
gratings are similar, being composed of an array of narrow rectangular mirrors
that behave similarly to the slits.

Figure 11.11 Transmission grating.

Let the slit apertures be positioned at

x ′
n =

(
n − N +1

2

)
h, y ′

n = 0 (11.23)

where N is the total number of slits. Then the summation in the array theorem,
(11.22), becomes

N∑
n=1

e−i k
z (xx ′

n+y y ′
n) = e i khx

z

(
N+1

2

) N∑
n=1

e−i khx
z n (11.24)

This summation is recognized as a geometric sum, which can be performed using
formula (0.65). Equation (11.24) then simplifies to

N∑
n=1

e−i k
z (xx ′

n+y y ′
n) = e i k

z

(
N+1

2

)
xhe−i khx

z
e−i khx

z N −1

e−i khx
z −1

= e−i khx
2z N −e i khx

2z N

e−i khx
2z −e i khx

2z

=
sin

(
N khx

2z

)
sin

(
khx
2z

) (11.25)

The diffraction pattern for a single slit was previously calculated in example 10.4.
When (11.25) and (10.20) are installed in the array theorem (11.22), we get for the
intensity

I
(
x, y, z

)= sin2
(
N khx

2z

)
sin2

(
khx
2z

) [
I0
∆x2∆y2

λ2z2 sinc2
(
π∆x

λz
x

)
sinc2

(
π∆y

λz
y

)]
(11.26)

This is the Fraunhofer diffraction pattern for the overall grating.
The y dependence in (11.26) is typically unimportant in applications where

spectral information is revealed in the x-dimension only. Moreover, the inci-
dent field often does not have a uniform strength along the entire slit in the
y-dimension, making the diffraction pattern along the y dimension different
from sinc

[(
π∆y/λz

)
y
]

anyway. Since y is of little relevance, we can consider the
pattern in (11.26) for fixed y , say y = 0. The intensity pattern in the horizontal
dimension may be written as

I (x) = Ipeaksinc2
(
π∆x

λz
x

) sin2
(
N πhx

λz

)
N 2 sin2

(
πhx
λz

) (11.27)
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Note that lim
α→0

sin Nα
sinα = N so we have placed N 2 in the denominator and absorbed

the same factor into the definition of Ipeak, which represents the intensity on the
screen at x = 0. Again, the intensity Ipeak is associated with a given value of y .

It is left as an exercise to study the functional form of (11.27), especially how
the number of slits N influences the behavior. The case of N = 2 describes
the diffraction pattern for a Young’s double slit experiment. We now have a
description of the Young’s two-slit pattern in the case that the slits have finite
openings of width ∆x rather than infinitely narrow ones.

11.5 Spectrometers

420-2-4

N = 2

N = 100

N = 10

N = 5

Figure 11.12 Plot of the intensity
at a screen for diffraction through
various numbers of slits, each with
∆x = h/2 (slit widths half the sep-
aration). The vertical scale is ar-
bitrary and different for each plot
(assuming the same illumination).
The dotted line shows the single
slit diffraction pattern. (a) Diffrac-
tion from a double slit. (b) Diffrac-
tion from 5 slits. (c) Diffraction
from 10 slits. (d) Diffraction from
100 slits with an inset illustrating
the width of a peak.

The formula (11.27) can be exploited to make wavelength measurements. This
forms the basis of a diffraction grating spectrometer. In order to achieve good spa-
tial separation between wavelengths, it is necessary to allow the light to propagate
a far distance. Optimal wavelength separation therefore occurs in the Fraunhofer
regime for which (11.27) applies.

A spectrometer has relatively poor resolving power compared to a Fabry-Perot
interferometer. Nevertheless, a spectrometer is not hampered by the serious
limitation imposed by free spectral range. A spectrometer is able to measure a
wide range of wavelengths simultaneously. The Fabry-Perot interferometer and
the grating spectrometer in this sense are complementary, the one being able
to make very precise measurements within a narrow wavelength range and the
other being able to characterize wide ranges of wavelengths simultaneously.

To appreciate how a spectrometer works, consider Fraunhofer diffraction
from a grating, as described by (11.27). The structure of the diffraction pattern
has various peaks. For example, Fig. 11.12a shows the diffraction peaks from a
Young’s double slit (i.e. N = 2). The diffraction pattern is comprised of the typical
Young’s double-slit pattern multiplied by the diffraction pattern of a single slit.

(Note that sin2
(
2πhx
λz

)
/4sin2

(
πhx
λz

)
= cos2

(
πhx
λz

)
.)

As the number of slits N increases, the peaks tend to sharpen while staying in
the same location as the peaks in the Young’s double-slit pattern. Figure 11.12b
shows the case for N = 5. The prominent peaks occur when sin(πhx/λz) in the
denominator of (11.27) goes to zero. Keep in mind that the numerator goes to
zero at the same places, creating a zero-over-zero situation, so the peaks are not
infinitely tall.

With larger values of N , the peaks can become extremely sharp, and the small
secondary peaks in between become tiny in comparison. Fig. 11.12c shows the
case of N = 10 and Fig. 11.12d, shows the case of N = 100.

When very many slits are used, the resulting sharp diffraction peaks becomes
very useful for measuring spectra of light, since the position of the diffraction
peaks depends on wavelength (except for the center peak at x = 0). If light of differ-
ent wavelengths is simultaneously present, then the diffraction peaks associated
with different wavelengths appear in different locations.
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Consider the inset in Fig. 11.12d, which gives a close-up view of the first-order
diffraction peak for N = 100. The location of this peak on a distant screen varies
with the wavelength of the light. How much must the wavelength change to cause
the peak to move by half of its ‘width’ as marked in the inset of Fig. 11.12d? This
corresponds to the minimum wavelength separation that allows two associated
peaks to be distinguished.

Figure 11.13 Animation showing
diffraction through a number of
slits.

Finding the Minimum Distinguishable Wavelength Separation

As mentioned, the main diffraction peaks occur when the denominator of (11.27)
goes to zero, i.e.

πhx

λz
= mπ (11.28)

The numerator of (11.27) goes to zero at these same locations (i.e. Nπhx/λz =
N mπ), so the peaks remain finite. If two nearby wavelengths λ1 and λ2 are sent
through the grating simultaneously, their mth peaks are located at

x1 = mzλ1

h
and x2 = mzλ2

h
(11.29)

These are spatially separated by

∆xλ ≡ x2 −x1 = mz

h
∆λ (11.30)

where ∆λ≡λ2 −λ1.

Meanwhile, we can find the spatial width of, say, the first peak by considering the
change in x1 that causes the sine in the numerator of (11.27) to reach the nearby
zero (see inset in Fig. 11.12d). This condition implies

N
πh

(
x1 +∆xpeak

)
λ1z

= N mπ+π (11.31)

We will say that two peaks, associated with λ1 and λ2, are barely distinguishable
when ∆xλ =∆xpeak. We also substitute from (11.29) to rewrite (11.31) as

N
πh (mzλ1/h +mz∆λ/h)

λ1z
= N mπ+π ⇒ ∆λ= λ

N m
(11.32)

Here we have dropped the subscript on the wavelength in the spirit of λ1 ≈λ2 ≈λ.

As we did for the Fabry-Perot interferometer, we can define the resolving
power of the diffraction grating as

RP ≡ λ

∆λ
= mN (11.33)

The resolving power is proportional to the number of slits illuminated on the
diffraction grating. The resolving power also improves for higher diffraction
orders m.

https://vimeo.com/717105837
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Example 11.3

What is the resolving power with m = 1 of a 2-cm-wide grating with 500 slits per
millimeter, and how wide is the 1st-order diffraction peak for 500-nm light after
1-m focusing?

Solution: From (11.33) the resolving power is

RP = mN = 2 cm
500

0.1 cm
= 104

and the minimum distinguishable wavelength separation is

∆λ=λ/RP = 500 nm/104 = 0.05 nm

From (11.30), with z → f , we have

∆x = m f

h
∆λ= 1 m

2×10−6 m
0.05nm = 25 µm

As illustrated in the previous example, it is common to employ a focusing optic
to reach the Fraunhofer limit within a convenient distance. In addition, since
the array theorem requires the same illumination of each slit, the incident light
should be collimated or plane-wave like. This is also accomplished using a lens.
Figure 11.14 illustrates the typical layout. Light enters a narrow slit located at the
focus of a concave mirror. The first mirror collimates the light, and the collimated
light then strikes a reflective diffraction grating. The first-order diffracted light
then travels to a second concave mirror which focuses the diffracted light to an
exit slit, where the Fraunhofer diffraction pattern of the grating appears. If a
CCD camera is positioned at the focus to record many wavelengths at once, the
instrument is called a spectrometer. If instead an exit slit is placed at the focus
so that only one wavelength at a time emerges through the slit, the instrument
is called a monochromator. In the latter case, the angle of the grating can be
scanned to cause different wavelengths to transmit through the exit slit.

Light out

Light in

Slit

Slit

Grating

Figure 11.14 Symmetric monochromator layout.
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11.6 Diffraction of a Gaussian Field Profile

Consider a Gaussian field profile (in the plane z = 0) described with the functional
form

E(x ′, y ′,0) = E0e
− x′2+y ′2

w2
0 (11.34)

The parameter w0 is called the beam waist, which specifies the radius of Gaussian
profile. It is depicted in Fig. 11.15. To better appreciate the meaning of w0,
consider the intensity of the above field distribution:

I
(
x ′, y ′,0

)= I0e−2ρ′2/w 2
0 (11.35)

where ρ′2 ≡ x ′2 + y ′2. In (11.35) we see that w0 indicates the radius at which the
intensity reduces by the factor e−2 = 0.135.

z-axis

Figure 11.15 Diffraction of a Gaus-
sian field profile.

We would like to know how this field evolves when it propagates forward from
the plane z = 0. Notice that the phase of (11.34) is uniform or plane-wave like. We
therefore expect the beam to expand outward as it diffracts along z.4 We compute
the field downstream using the Fresnel approximation (10.13):

E
(
x, y, z

)=−i
e i kz e i k

2z (x2+y2)

λz

∞∫
−∞

d x ′
∞∫

−∞
d y ′

[
E0e−(x′2+y ′2)/w2

0

]
e i k

2z (x′2+y ′2)e−i k
z (xx′+y y ′)

(11.36)

The Gaussian profile itself limits the dimension of the ‘aperture’, so there is no
problem with integrating to infinity. Equation (11.36) can be rewritten as

E
(
x, y, z

)=−i
E0e i kz e i k

2z (x2+y2)

λz

∞∫
−∞

d x ′e
−

(
1

w2
0
−i k

2z

)
x′2−i kx

z x ′ ∞∫
−∞

d y ′e
−

(
1

w2
0
+i k

2z

)
y ′2−i k y

z y ′

(11.37)

The integrals over x ′ and y ′ have the identical form and can be done individually
with the help of the integral formula (0.55). The algebra is cumbersome, but the
integral in the x ′ dimension becomes

∞∫
−∞

d x ′e
−

(
1

w2
0
−i k

2z

)
x ′2−i kx

z x ′
=

 π
1

w 2
0
− i k

2z

 1
2

exp


(
−i kx

z

)2

4
(

1
w 2

0
− i k

2z

)


=

 π

−i k
2z

(
1+ i 2z

kw 2
0

)


1
2

exp

 −kx2

2z
(

2z
kw 2

0
− i

)


=

 λz√
1+

(
2z

kw 2
0

)2
e

i tan−1 2z
kw2

0


1
2

exp

−kx2
[

2z
kw 2

0
+ i

]
2z

[
1+

(
2z

kw 2
0

)2
]


(11.38)
4The beam would converge to narrower widths if instead we used a phase associated with

converging wavefronts like those on the left of Fig. 11.17.
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A similar expression results from the integration on y ′.
When (11.38) and the equivalent expression for the y-dimension are used in

(11.37), the result is

E
(
x, y, z

)= E0
e i kz e i k

2z (x2+y2)√
1+

(
2z

kw 2
0

)2
e

− (x2+y2)
1+

(
2z

kw2
0

)2

(
1

w2
0
+i k

2z

)
e
−i tan−1 2z

kw2
0 (11.39)

This rather complicated-looking expression for the field distribution is in fact very
useful and can be directly interpreted, as discussed in the next section.

Gaussian Field in Cylindrical Coordinates

A Gaussian field profile is one of few diffraction problems that can be handled con-
veniently in either the Cartesian (as above) or cylindrical coordinate. In cylindrical
coordinates, the Fresnel diffraction integral (10.27) is

E
(
ρ, z

)=−2πi e i kz e i kρ2

2z

λz

∞∫
0

ρ′dρ′E0e−ρ
′2/w2

0 e i kρ′2
2z J0

(
kρρ′

z

)

We can use the integral formula (0.59) to obtain

E
(
ρ, z

)=−i E0

2πe i kz e i kρ2

2z

λz

e

−
(

kρ
z

)2

4

[
1

w2
0
−i k

2z

]

2

[
1

w2
0
− i k

2z

]

= E0

e i kz e i kρ2

2z√
1+

(
2z

kw2
0

)2
e

− ρ2

1+
(

2z
kw2

0

)2

(
1

w2
0
+i k

2z

)
e
−i tan−1 2z

kw2
0

which is identical to (11.39).

11.7 Gaussian Laser Beams

The cumbersome Gaussian-field expression (11.39) can be cleaned up through
judicious introduction of new quantities:

E
(
ρ, z

)= E0
w0

w (z)
e
− ρ2

w2(z) e i kz+i kρ2

2R(z)−i tan−1 z
z0 (11.40)
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where

ρ2 ≡ x2 + y2, (11.41)

w (z) ≡ w0

√
1+ z2/z2

0 , (11.42)

R (z) ≡ z + z2
0 /z, (11.43)

z0 ≡
kw 2

0

2
(11.44)

This formula describes the lowest-order Gaussian mode, the most common laser
beam profile.5

It turns out that (11.40) works equally well for negative values of z. The
expression can therefore be used to describe the field of a simple laser beam
everywhere (before and after it goes through a focus). In fact, the expression works
also near z = 0! At z = 0 the diffracted field (11.40) returns the exact expression for
the original field profile (11.34) (see P11.11).There is good reason for this since
the Fresnel diffraction integral is an exact solution to the paraxial wave equation
(10.15). The beam (11.40) satisfies the paraxial wave equation for positive and
negative z. In short, (11.40) may be used with impunity as long as the divergence
angle of the beam is not too wide.

As we analyze (11.40), consider the intensity profile I ∝ |E |2 as depicted in
Fig. 11.16:

I
(
ρ, z

)= I0

w2
0

w2 (z)
e
− 2ρ2

w2(z) = I0

1+ z2/z2
0

e
− 2ρ2

w2(z) (11.45)

Figure 11.16 A Gaussian laser field
profile in the vicinity of its beam
waist.

By inspection, we see that w (z) gives the radius of the beam anywhere along
z. At z = 0, the beam waist, w (z = 0) reduces to w0, as expected. The parameter
z0, known as the Rayleigh range, specifies the distance along the axis from z = 0
to the point where the intensity decreases by a factor of 2. Note that w0 and z0

are not independent of each other but are connected through the wavelength
according to (11.44). There is a tradeoff: a small beam waist means a short depth
of focus. That is, a small w0 means a small Rayleigh range z0.

We next consider the phase terms that appear in the field expression (11.40).
The phase term i kz+i kρ2/2R (z) describes the phase of curved wavefronts, where
R (z) is the radius of curvature of the wavefront at z. The curvature of wavefronts
is evident in Fig. 11.17. At z = 0, the radius of curvature is infinite (see (11.43)),
meaning that the wavefront is flat at the laser beam waist. In contrast, at very
large values of z we have R (z) ∼= z (see (11.43)). In this case, we may write these

phase terms as kz + kρ2

2z
∼= k

√
z2 +ρ2. This describes a spherical wavefront ema-

nating from the origin out to point
(
ρ, z

)
. The Fresnel approximation represents

spherical wavefronts as parabolic curves (same as the paraxial approximation).
As a reminder, to restore the temporal dependence of the field, we append e−iωt

to the solution, as discussed in connection with (10.4).

5Lasers can also be multimode, exhibiting more complicated structure through ‘higher-order’
modes.
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The phase −i tan−1 z/z0 is perhaps a bit more mysterious. It is called the Gouy
shift and is actually present for any light that goes through a focus, not just laser
beams. The Gouy shift is not overly dramatic since the expression tan−1 z/z0

ranges from −π/2 (at z =−∞) to π/2 (at z =+∞). Nevertheless, when light goes
through a focus, it experiences an overall phase shift of π.

Example 11.4

Write the beam waist w0 in terms of the f-number, defined to be the ratio of z to
the beam diameter 2w(z) far from the beam waist.

Solution: Far away from the beam waist (i.e. z ≫ z0) the laser beam expands along
a cone. That is, its diameter increases in proportion to distance.

w (z) = w0

√
1+ z2/z2

0 → w0z/z0

Figure 11.18

The cone angle is parameterized by the f-number, the ratio of the cone height to
its base:

f # ≡ lim
z→±∞

z

2w (z)
= z

2w0z/z0

= z0

2w0

Substitution of (11.44) into this expression yields

w0 = 2λ f #

π
(11.46)

Equation (11.46) gives a convenient way to predict the size of a laser focus.
One calculates the f-number by dividing the diameter of the beam far from the
focus into the distance from the focus. In practice you may be very surprised at
how poorly a beam may focus in comparison with the theoretical prediction (due
to aberrations). It is always good practice to directly measure your focus if its size
is important to an experiment.

Figure 11.17 Real part of a Gaussian laser field at an instant in time. The radius of
curvature of wavefronts is apparent.
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Figure 11.19 Gaussian laser beam traversing an optical system described by an ABCD
matrix. The dark lines represent the incoming and exiting beams. The gray line repre-
sents where the exiting beam appears to have been.

Appendix 11.A ABCD Law for Gaussian Beams

In this section we discuss and justify the ABCD law for Gaussian beams. The
law enables one to predict the parameters of a Gaussian beam that exits from an
optical system, given the parameters of an input Gaussian beam. To make the
prediction, one needs only the ABCD matrix for the optical system, taken as a
whole. The system may be arbitrarily complex with many optical components.

At first, it may seem unlikely that such a prediction should be possible since
ABCD matrices were introduced to describe the propagation of rays. On the other
hand, Gaussian beams are governed by the laws of diffraction. As an example of
this dichotomy, consider a collimated Gaussian beam that traverses a converging
lens. By ray theory, one expects the Gaussian beam to focus near the focal point
of the lens. However, a collimated beam by definition is already in the act of going
through focus. In the absence of the lens, there is a tendency for the beam to grow
via diffraction, especially if the beam waist is small. This tendency competes with
the focusing effect of the lens, and a new beam waist can occur at a wide range of
locations, depending on the exact outcome of this competition.

A Gaussian beam is characterized by its Rayleigh range z0. From this, the
beam waist radius w0 may be extracted via (11.44), assuming the wavelength is
known. Suppose that a Gaussian beam encounters an optical system at position
z, referenced to the position of the beam’s waist as shown in Fig. 11.19. The beam
exiting from the system, in general, has a new Rayleigh range z ′

0. The waist of the
new beam also occurs at a different location. Let z ′ denote the location of the exit
of the optical system, referenced to the location of the waist of the new beam. If
the exiting beam diverges as in Fig. 11.19, then it emerges from a virtual beam
waist located before the exit point of the system. In this case, z ′ is taken to be
positive. On the other hand, if the emerging beam converges to an actual waist,
then z ′ is taken to be negative since the exit point of the system occurs before the
focus.

The ABCD law is embodied in the following relationship:6

z ′+ i z ′
0 =

A (z + i z0)+B

C (z + i z0)+D
(11.47)

6The complex conjugate of this expression works equally well.
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where A, B , C , and D are the matrix elements of the optical system. The imaginary
number i ≡p−1 imbues the law with complex arithmetic. It makes two equations
from one, since the real and imaginary parts of (11.47) must separately be equal.

We now prove the ABCD law. We begin by showing that the law holds for
two specific ABCD matrices. First, consider the matrix for propagation through a
distance d : [

A B
C D

]
=

[
1 d
0 1

]
(11.48)

We know that simple propagation has minimal effect on a beam. The Rayleigh
range is unchanged, so we expect that the ABCD law should give z ′

0 = z0. The
propagation through a distance d modifies the beam position by z ′ = z +d . We
now check that the ABCD law agrees with these results by inserting (11.48) into
(11.47):

z ′+ i z ′
0 =

1(z + i z0)+d

0(z + i z0)+1
= z +d + i z0 (propagation through distance d) (11.49)

Thus, the law holds in this case.
Next we consider the ABCD matrix of a thin lens (or a curved mirror):[

A B
C D

]
=

[
1 0

−1/ f 1

]
(11.50)

A beam that traverses a thin lens undergoes the phase shift −kρ2/2 f , according
to (11.11). This modifies the original phase of the wavefront kρ2/2R (z), seen in
(11.40). The phase of the exiting beam is therefore

kρ2

2R (z ′)
= kρ2

2R (z)
− kρ2

2 f
(11.51)

where we do not keep track of unimportant overall phases such as kz or kz ′. With
(11.43) this relationship reduces to

1

R (z ′)
= 1

R (z)
− 1

f
⇒ 1

z ′+ z ′2
0 /z ′ =

1

z + z2
0 /z

− 1

f
(11.52)

In addition to this relationship, the local radius of the beam given by (11.42)
cannot change while traversing the ‘thin’ lens. Therefore,

w
(
z ′)= w (z) ⇒ z ′

0

(
1+ z ′2

z ′2
0

)
= z0

(
1+ z2

z2
0

)
(11.53)

On the other hand, the ABCD law for the thin lens gives

z ′+ i z ′
0 =

1(z + i z0)+0

−(
1/ f

)
(z + i z0)+1

(traversing a thin lens with focal length f)

(11.54)
It is left as an exercise (see P11.14) to show that (11.54) is consistent with (11.52)
and (11.53).
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So far we have shown that the ABCD law works for two specific examples,
namely propagation through a distance d and transmission through a thin lens
with focal length f . From these elements we can derive more complicated systems.
However, the ABCD matrix for a thick lens cannot be constructed from just these
two elements. We can construct the matrix for a thick lens if we sandwich a thick
window (as opposed to empty space) between two thin lenses (see P9.9). The
proof that the matrix for a thick window obeys the ABCD law is left as an exercise
(see P11.17). With these relatively few elements, essentially any optical system
can be constructed, provided that the beam propagation begins and ends in the
same index of refraction.

To complete our proof of the general ABCD law, we need only show that when
it is applied to the compound element[

A B
C D

]
=

[
A2 B2

C2 D2

][
A1 B1

C1 D1

]
=

[
A2 A1 +B2C1 A2B1 +B2D1

C2 A1 +D2C1 C2B1 +D2D1

]
(11.55)

it gives the same answer as when the law is applied sequentially, first on[
A1 B1

C1 D1

]
and then on [

A2 B2

C2 D2

]
Explicitly, we have

z ′′+ i z ′′
0 = A2

(
z ′+ i z ′

0

)+B2

C2
(
z ′+ i z ′

0

)+D2

=
A2

[
A1(z+i z0)+B1
C1(z+i z0)+D1

]
+B2

C2

[
A1(z+i z0)+B1
C1(z+i z0)+D1

]
+D2

= A2 [A1 (z + i z0)+B1]+B2 [C1 (z + i z0)+D1]

C2 [A1 (z + i z0)+B1]+D2 [C1 (z + i z0)+D1]

= (A2 A1 +B2C1) (z + i z0)+ (A2B1 +B2D1)

(C2 A1 +D2C1) (z + i z0)+ (C2B1 +D2D1)

= A (z + i z0)+B

C (z + i z0)+D

(11.56)

Thus, we can construct any ABCD matrix that we wish from matrices that are
known to obey the ABCD law. The resulting matrix also obeys the ABCD law.
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Exercises

Exercises for 11.1 Fraunhofer Diffraction with a Lens

P11.1 Fill in the steps leading to (11.14) starting from (11.12) and (11.13).
Show that the intensity distribution (11.6) is consistent with (11.14).

L11.2 Set up a collimated ‘plane wave’ in the laboratory using a HeNe laser
(λ= 633 nm) and appropriate lenses.

(a) Choose a rectangular aperture (∆x by ∆y) and place it in the plane
wave. Observe the Fraunhofer diffraction on a very far away screen (i.e.
where z ≫ k

2

(
aperture radius

)2 is satisfied). Check that the location of
the ‘zeros’ agrees with (10.20).

(b) Place a lens in the beam after the aperture. Use a CCD camera
to observe the Fraunhofer diffraction profile at the focus of the lens.
Check that the location of the ‘zeros’ agrees with (10.20), replacing z
with f .

(c) Repeat parts (a) and (b) using a circular aperture with diameter D .
Check the position of the first ‘zero’. (video)

Laser

Screen

Far-away
mirror

Removable
mirror Aperture

CCD
Camera

Filters

Figure 11.20

Exercises for 11.2 Resolution of a Telescope

P11.3 On the night of April 18, 1775, a signal was sent from the Old North
Church steeple to Paul Revere, who was 1.8 miles away: “One if by
land, two if by sea.” If in the dark, Paul’s pupils had 4 mm diameters,
what is the minimum possible separation between the two lanterns
that would allow him to correctly interpret the signal? Assume that the
predominant wavelength of the lanterns was 580 nm.

HINT: You don’t need to worry about refractive index inside the eye,
n = 1.33. This causes the angular separation between the images to be
θ/1.33 inside the eye. The wavelength also shortens to 580 nm/1.33,
causing a smaller diffraction pattern. As far as resolution is concerned,
the two effects exactly compensate.

https://vimeo.com/717097170
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L11.4 Simulate two stars using laser beams (λ= 633 nm). Align them nearly
parallel with a small lateral displacement. (A mirror can aid in getting
the beams very close.) Send the beams down a long corridor until
diffraction causes both beams to blend together so that it is no longer
apparent that they are from two distinct sources. Use a lens to image
the two sources onto a CCD camera. Use a variable iris near the lens to
create different diameters.

Laser

Laser

Pupil

Filter

CCD
Camera

Figure 11.21

Experimentally determine the diameter D that just allows you to re-
solve the two sources according to the Rayleigh criterion. Check your
measurement against theoretical prediction. (video)

HINT: The angular separation between the two sources is obtained
by dividing the lateral separation of the beams into the propagation
distance.

Exercises for 11.3 The Array Theorem

P11.5 Find the Fraunhofer diffraction pattern created by an array of nine
circles, each with radius a, which are centered at the following (x ′, y ′)
coordinates: (−b,b), (0,b), (b,b), (−b,0), (0,0), (b,0), (−b,−b), (0,−b),
(b,−b). Make a plot of the result for the situation where b = 5a. Scale
position with units of z/(ka). View the plot at different ‘zoom levels’ to
see both course and fine detail.

Figure 11.22

P11.6 (a) A plane wave is incident on a screen of N 2 uniformly spaced identi-
cal rectangular apertures of dimension ∆x by ∆y (see Fig. 11.22). Their
positions are described by xn = h

(
n − N+1

2

)
and ym = s

(
m − N+1

2

)
. Find

the far-field (Fraunhofer) pattern of the light transmitted by the grid.

(b) You look at a distant sodium street lamp (somewhat monochro-
matic) through a curtain made from a fine mesh fabric with crossed
threads. Make a sketch of what you expect to see (how the lamp will
look to you).

HINT: Remember that the lens of your eye causes the Fraunhofer
diffraction of the mesh to appear at the retina.

https://vimeo.com/717097233
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Exercises for 11.4 Diffraction Grating

P11.7 Consider Fraunhofer diffraction from a grating of N slits having widths
∆x and equal separations h. Make plots (label relevant points and
scaling) of the intensity pattern for N = 1, N = 2, N = 5, and N =
1000 in the case where h = 2∆x, ∆x = 5 µm, and λ= 500 nm. Let the
Fraunhofer diffraction be observed at the focus of a lens with focal
length f = 100 cm. Do you expect Ipeak to be the same value for all of
these cases?

Exercises for 11.5 Spectrometers

P11.8 For the case of N = 1000 in P11.7, you wish to position a narrow slit at
the focus of the lens so that it transmits only the first-order diffraction
peak (i.e. at khx/

(
2 f

)=±π). (a) How wide should the slit be if it is to
match the width of the peak (as defined in (11.31))?

(b) What small change in wavelength (away from λ = 500 nm) will
cause the intensity peak to shift by the width of the slit found in part
(a)?

L11.9 (a) Use a HeNe laser to determine the period h of a reflective grating.

Figure 11.23

(b) Give an estimate of the blaze angle φ on the grating. HINT: Assume
that the blaze angle is optimized for first-order diffraction of the HeNe
laser (for one side) at normal incidence. The blaze angle enables a
mirror-like reflection of the diffracted light on each groove. (video)

(c) You have two mirrors of focal length 75 cm and the reflective grating
in the lab. You also have two very narrow adjustable slits and the ability
to ‘tune’ the angle of the grating. Sketch how to use these items to make
a monochromator. If the beam that hits the grating is 5 cm wide, what
do you expect the ultimate resolving power of the monochromator to
be in the wavelength range of 500 nm? HINT: See Fig. 11.14.

L11.10 Study the Jarrell Ash monochromator. Use a tungsten lamp as a source
and observe how the instrument works by taking the entire top off. Do
not breathe-on or touch the optical surfaces when you do this. In the
dark, trace the light inside of the instrument with a card and observe
what happens when you change the wavelength setting. Place the top
back on when you are done. (video)

(a) Predict the best theoretical resolving power that this instrument can
do assuming 1200 lines per millimeter. You will need to measure the
width of the grating, which is matched well to the width of each mirror.

(b) What should the width ∆x of the entrance and exit slits be to obtain
this resolving power? Assume λ= 500 nm.

https://vimeo.com/717097160
https://vimeo.com/717097209


300 Chapter 11 Diffraction Applications

HINT: Set ∆x to the peak width of a given wavelength, as defined in
(11.31).

(c) Using the width of the mirrors, determine the f-number (defined
in example 11.4) of the monochromator. Ideally, an external lens will
couple light into the monochromatic using the same f-number. Com-
pute the beam waist (11.46) for a Gaussian beam and check whether it
approximately matches the size of the slit found in part (b).

Exercises for 11.7 Gaussian Laser Beams

P11.11 (a) Confirm that (11.40) reduces to (11.34) when z = 0.

(b) Take the limit z ≫ z0 of (11.40) to find the far-field form of the beam,
which is the Fraunhofer diffraction of the laser focus.

P11.12 Use the Fraunhofer integral formula (either (10.19) or (10.28)) to deter-
mine the far-field pattern of a Gaussian laser focus (11.34).

HINT: The answer should agree with P11.11 part (b).

Ghost Beam

Figure 11.24

L11.13 Consider the following setup where a diverging laser beam is collimated
using an uncoated lens. A double reflection from the two surfaces of the
lens (known as a ghost) comes out in the forward direction, focusing
after a short distance. Use a CCD camera to study this focused beam.
The collimated beam serves as a reference to reveal the phase of the
focused beam through interference. Because the weak ghost beam
concentrates near its focus, the two beams can have similar intensities
for optimal fringe visibility. (video)7

Laser

Filter Pin Hole

Lens

150 cm

Uncoated
Lens

CCD
Camera

Figure 11.25

The ghost beam E1
(
ρ, z

)
is described by (11.40), where the origin is at

the focus. Let the collimated beam be approximated as a plane wave
E2e i kz+iφ, where φ is the relative phase between the two beams. The

net intensity is then It
(
ρ, z

)∝ ∣∣E1
(
ρ, z

)+E2e i kz+iφ
∣∣2

or

It
(
ρ, z

)= [
I2 + I1

(
ρ, z

)+2
√

I2I1
(
ρ, z

)
cos

(
kρ2

2R (z)
− tan−1 z

z0

−φ
)]

7J. Peatross and M. V. Pack, “Viewing the Mathematical Structure of Gaussian Laser Beams in a
Student Laboratory,” Am. J. Phys. 69, 1169 (2001).

https://vimeo.com/717097201
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where I1
(
ρ, z

)
is given by (11.45). We now have a formula that retains

both R (z) and the Gouy shift tan−1 z/z0, which are not present in the
intensity distribution of a single beam (see (11.45)).

(a) Determine the f-number for the ghost beam (see example 11.4). Use
this measurement to predict a value for w0. HINT: You know that at the
lens, the focusing beam is the same size as the collimated beam. z = 0

z = -z0

z = -2z0

z = -3z0

z = +z0

z = +2z0

z = +3z0

z = +4z0

Figure 11.26

(b) Measure the actual spot size w0 at the focus. How does it compare
to the prediction?

HINT: Before measuring the spot size, make a subtle adjustment to
the tilt of the lens. This incidentally causes the phase between the two
beams to vary by small amounts, which you can set to φ=±π/2. Then
at the focus the cosine term vanishes and the two beams don’t interfere
(i.e. the intensities simply add). This is accomplished if the center of
the interference pattern is as dark as possible either far before or far
after the focus.

(c) Observe the effect of the Gouy shift. Since tan−1 z/z0 varies over a
range of π, you should see that the ring pattern inverts as you move
the camera from before the focus to after the focus (i.e. the bright rings
exchange with the dark ones).

(d) Predict the Rayleigh range z0 and check that the radius of curvature
R (z) ≡ z + z2

0 /z agrees with measurement at a small distance from the
focus.

HINT: You should see interference rings similar to those in Fig. 11.26.
The only phase term that varies with ρ is kρ2/2R (z). If you count N
fringes out to a radius ρ, then kρ2/2R (z) has varied by 2πN .

Exercises for 11.A ABCD Law for Gaussian Beams

P11.14 Find the solutions to (11.54) (i.e. find z ′ and z ′
0 in terms of z and z0).

Show that the results are in agreement with (11.52) and (11.53).

P11.15 Assuming a collimated beam (i.e. z = 0 and beam waist w0), find the
location L =−z ′ and size w ′

0 of the subsequent focus when the beam
goes through a thin lens with focal length f .

L11.16 Place a long-focal-length lens (e.g. f = 100 cm) in a HeNe laser beam
soon after the exit mirror of the cavity where the beam waist w0 is sub
millimeter. Characterize the focus of the resulting laser beam using
filters and a CCD camera, and compare the results with the expressions
derived in P11.15.
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P11.17 Prove the ABCD law for a beam propagating through a thick window of
material with matrix [

A B
C D

]
=

[
1 d/n
0 1

]



Chapter 12

Interferograms and Holography

In chapter 8, we studied a Michelson interferometer in an idealized sense: 1) The
light entering the instrument was considered to be a plane wave. 2) The retro-
reflecting mirrors were considered to be aligned perpendicular to the beams
impinging on them. 3) All reflective surfaces were taken to be perfectly flat. If any
of these conditions are not met, the beam emerging from the interferometer is
likely to exhibit an interference or fringe pattern. A recorded fringe pattern (for
example, on a CCD camera) is called an interferogram. In this chapter, we examine
typical fringe patterns that can be produced in an interferometer. Such patterns
are very useful for testing the prescription and quality of optical components.1

We will also study holography, where an interference pattern (or fringe pat-
tern) is recorded and then later used to diffract light, in much the same way that
gratings diffract light.2 A recorded fringe pattern, when used for this purpose,
is called a hologram. When light diffracts from a hologram, it can mimic the
light field originally used to generate the fringe pattern. This is true even for
complicated fields, recorded when light scatters from arbitrary three-dimensional
objects. When the light field is re-created through diffraction, the resulting image
looks ‘three-dimensional’, since the holographic fringes re-construct the original
light field over a wide range of viewing angles.

12.1 Interferograms

Figure 12.1 Michelson interferom-
eter.

Consider the Michelson interferometer seen in Fig. 12.1. Suppose that the beam-
splitter divides the fields evenly, so that the overall output intensity is given by
(8.1):

Itot = 2I0 [1+cos(ωτ)] (12.1)

As a reminder, τ is the roundtrip delay time of one path relative to the other. This
equation is based on the idealized case, where the amplitude and phase of the two

1See M. Born and E. Wolf, Principles of Optics, 7th ed., Sect. 7.5.5 (Cambridge: Cambridge
University Press, 1999).

2In fact, a grating can be considered to be a hologram and holographic techniques are often
employed to produce gratings.
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beams are uniform and perfectly aligned to each other following the beamsplitter.
The entire beam ‘blinks’ on and off as the delay path τ is varied.

(a)

(b)

(c)

(d)

(e)

Figure 12.2 Fringe patterns for a
Michelson interferometer: (a) Hor-
izontally misaligned beams. (b)
Vertically misaligned beams. (c)
Both vertically and horizontally
misaligned beams. (d) Diverging
beam with unequal paths. (e) Di-
verging beam with unequal paths
and horizontal misalignment.

What happens if one of the retro-reflecting mirrors is misaligned by a small
angle θ? The fringe patterns seen in Fig. 12.2 (a)-(c) are the result. By the law
of reflection, the beam returning from the misaligned mirror deviates from the
‘ideal’ path by an angle 2θ. This puts a relative phase variation of

φ= kx sin(2θx )+k y sin
(
2θy

)
(12.2)

on the misaligned beam.3 Here θx represents the tilt of the mirror in the x-
dimension and θy represents the amount of tilt in the y-dimension.

When the two plane waves join, the resulting intensity pattern is

Itot = 2I0

[
1+cos

(
φ+ωτ)] (12.3)

The phase term φ depends on the local position within the beam through x and
y . Regions of uniform phase, called fringes (in this case individual stripes), have
the same intensity. As the delay τ is varied, the fringes seem to ‘move’ across the
detector. In this case, the fringes appear at one edge of the beam and disappear
at the other.

Another interesting situation arises when the beams in a Michelson interfer-
ometer are diverging. A fringe pattern of concentric circles will be seen at the
detector when the two beam paths are unequal (see Fig. 12.2 (d)). The radius of
curvature for the beam traveling the longer path is increased by the added amount
of delay d = τc. Thus, if beam 1 has radius of curvature R1 when returning to the
beam splitter, then beam 2 will have radius R2 = R1+d upon return (assuming flat
mirrors). The relative phase (see phase term in (11.40)) between the two beams is

φ= kρ2/2R1 −kρ2/2R2 (12.4)

and the intensity pattern at the detector is given as before by (12.3).

12.2 Testing Optical Surfaces

A Michelson interferometer is ideal for testing the quality of optical surfaces. If
any of the flat surfaces (including the beam splitter) in the interferometer are
distorted, the fringe pattern readily reveals it. Figure 12.3 shows an example of a
fringe pattern when one of the mirrors in the interferometer has an arbitrary de-
formity in the surface figure.4 A new fringe stripe occurs for every half wavelength
that the surface varies. (The round trip turns a half wavelength into a whole
wavelength.) This makes it possible to determine the flatness of a surface with
very high precision. Of course, in order to test a given surface in an interferometer,
the quality of all other surfaces in the interferometer must first be ensured.

3This ignores an additive constant for fixed z.
4The surface figure is a name for how well a surface contour matches a desired prescription.
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A typical industry standard for research-grade optics is to specify the surface
flatness to within one tenth of an optical wavelength (633 nm HeNe laser). This
means that the interferometer should reveal no more than one fifth of a fringe
variation across the substrate surface. The fringe pattern tells the technician how
the surface should continue to be polished in order to achieve the desired surface
flatness. Figure 12.3(a) shows the fringe pattern for a surface with significant
variations in the surface figure.

(a)

(b)

Figure 12.3 (a) Fringe pattern
from an arbitrarily distorted mir-
ror in a perfectly aligned interfer-
ometer with plane wave beams.
(b) Fringe pattern from the same
mirror when the mirror is tilted
(still plane wave beams).

When testing a surface, it is not necessary to remove all tilt from the alignment
before the effects of surface variations become apparent in the fringe pattern. In
fact, it can be helpful to observe the distortions as deflections in a normally regu-
larly striped fringe pattern. Figure 12.3(b) shows fringes from the same distorted
surface when some tilt is left in the interferometer alignment. An important
advantage to leaving some tilt in the beam is that one can better tell the sign of
the phase errors. We can see, for example, in the case of tilt that the two major
distortion regions in Fig. 12.3 have opposite phase; we can tell that one region of
the substrate protrudes while the other dishes in. On the other hand, this is not
clear for an interferogram with no tilt.

Other types of optical components (besides flat mirrors) can also be tested
with an interferometer. Figure 12.4 shows how a lens can be tested using a
convex mirror to compensate for the focusing action of the lens. With appropriate
spacing, the lens-mirror combination can act like a flat surface. Distortions in the
lens figure are revealed in the fringe pattern. In this case, the surfaces of the lens
are tested together, and variations in optical path length are observed. In order
to record fringes, say with a CCD camera, it is often convenient to image a larger
beam onto a relatively small active area of the detector. The imaging objective
should be adjusted to produce an image of the test optic on the detector screen.
The diameter of the objective lens needs to accommodate the whole beam.

Optic to
be tested

Imaging
Objective

Camera

Figure 12.4 Twyman-Green setup
for testing lenses.

12.3 Generating Holograms

In the late 1940’s, Dennis Gabor developed the concept of holography, but it wasn’t
until after the invention of the laser that this field really blossomed. Consider
a coherent monochromatic beam of light that is split in half by a beamsplitter,
similar to that in a Michelson interferometer. Let one beam, called the reference
beam, proceed directly to a recording film, and let the other beam scatter from
an arbitrary object back towards the same film. The two beams interfere at the
recording film. It is best to split the beam initially into unequal intensities such
that the light scattered from the object has an intensity similar to the reference
beam at the film.

The purpose of the film is to record the interference pattern. It is important
that the coherence length of the light be much longer than the difference in
path length starting from the beam splitter and ending at the film. In addition,
during exposure to the film, it is important that the whole setup be stable against
vibrations on the scale of a wavelength since this will cause the fringes to wash
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out. For simplicity, we neglect the vector nature of the electric field, assuming
that the scattering from the object for the most part preserves polarization and
that the angle between the two beams incident on the film is modest (so that the
electric fields of the two beams are close to parallel). To the extent that the light
scattered from the object contains the polarization component orthogonal to that
of the reference beam, it provides a uniform (unwanted) background exposure to
the film on top of which the fringe pattern is recorded.

Object

Film

Beamsplitter

Figure 12.5 Exposure of holo-
graphic film.

In general terms, we may write the electric field arriving at the film as5

Efilm (r)e−iωt = Eobject (r)e−iωt +Eref (r)e−iωt (12.5)

Here, the coordinate r indicates locations on the film surface, which may have
arbitrary shape but often is a plane. The field Eobject(r), which is scattered from
the object, is in general very complicated. The field Eref(r) may be equally compli-
cated, but typically it is convenient if it has a simple form such as a plane wave,
since this beam must be re-created later in order to view the hologram.

Dennis Gabor (1900–1979, Hungarian)
was born in Budapest. As a teenager,
he fought for Hungary in World War
I. Following the war, he studied at the
Technical University of Budapest and
later at the Technical University of Berlin.
In 1927, Gabor completed his doctoral
dissertation on cathode ray tubes and
began a long career working on electron-
beam devices such as oscilloscopes,
televisions, and electron microscopes.
It was in the context of ‘electron optics’
that he invented the concept of holog-
raphy, which relied on the wave nature
of electron beams. Gabor did this work
while working for a British company, af-
ter fleeing Germany when Hitler came
to power. Holography did not become
practical until after the invention of the
laser, which provided a bright coherent
light source. (Gabor had attempted to
make holograms earlier using a spec-
tral line from a mercury lamp.) In 1964
the first hologram was produced. Soon
after, holograms became commercially
available and were popularized. Ga-
bor accepted a post as professor of
applied physics at the Imperial College
of London from 1958 until he retired in
1967. He was awarded the Nobel prize
in physics in 1971 for the invention of
holography. (Wikipedia)

The intensity of the field (12.5) is given by

Ifilm (r) = 1

2
cϵ0

∣∣Eobject (r)+Eref (r)
∣∣2

= 1

2
cϵ0

[∣∣Eobject (r)
∣∣2 +|Eref (r)|2 +E∗

ref (r)Eobject (r)+Eref (r)E∗
object (r)

] (12.6)

For typical photographic film, the exposure of the film is proportional to the
intensity of the light hitting it. This is known as the linear response regime. That
is, after the film is developed, the transmittance T of the light through the film is
proportional to the intensity of the light that exposed it (Ifilm). However, for low
exposure levels, or for film specifically designed for holography, the transmission
of the light through the film can be proportional to the square of the intensity
of the light that exposes the film. Thus, after the film is exposed to the fringe
pattern and developed, the film acquires a spatially varying transmission function
according to

T (r) ∝ I 2
film(r) (12.7)

If at a later point in time light of intensity Iincident is directed onto the film, it will
transmit according to Itransmitted = T (r)Iincident. In this case, the field, as it emerges
from the other side of the film, will be

Etransmitted (r) = t (r)Eincident (r) ∝ Ifilm (r)Eincident (r) (12.8)

where t (r) =p
T (r).

12.4 Holographic Wavefront Reconstruction

To see a holographic image, we re-illuminate film (previously exposed and devel-
oped) with the original reference beam. That is, we send in

Eincident (r) = Eref (r) (12.9)

5See P. W. Milonni and J. H. Eberly, Lasers, Sect. 16.4-16.5 (New York: Wiley, 1988); G. R. Fowles,
Introduction to Modern Optics, 2nd ed., Sect. 5.7 (Toronto: Dover, 1975).

https://en.wikipedia.org/wiki/Dennis_Gabor
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and view the light that is transmitted. According to (12.6) and (12.8), the trans-
mitted field is proportional to

Etransmitted (r) ∝ Ifilm (r)Eref (r)

=
[∣∣Eobject (r)

∣∣2 +|Eref (r)|2
]

Eref (r)+|Eref (r)|2 Eobject (r)+E 2
ref (r)E∗

object (r)
(12.10)

Film

Image

Observer

Figure 12.6 Holographic recon-
struction of wavefront through
diffraction from fringes on film.
Compare with Fig. 12.5.

Although (12.10) looks fairly complicated, each of the three terms has a direct
interpretation. The first term is just the reference beam Eref (r) with an amplitude
modified by the transmission through the film. It is the residual undeflected beam,
similar to zero-order diffraction through a transmission grating. The second term
is interpreted as a reconstruction of the light field originally scattered from the
object Eobject (r). Its amplitude is modified by the intensity of the reference beam,
but if the reference beam is uniform across the film, this hardly matters. An
observer looking into the film sees a wavefront identical to the one produced
by the original object (superimposed with the other fields in (12.10)). Thus,
the observer sees a virtual image at the location of the original object. Since
the wavefront of the original object has genuinely been recreated, the image
looks ‘three-dimensional’, because the observer is free to view from different
perspectives.

The final term in (12.10) is proportional to the complex conjugate of the
original field from the object. It also contains twice the phase of the reference
beam, which we can overlook if the reference beam is uniform on the film. In
this case, the complex conjugate of the object field actually converges to a real
image of the original object. This image is located on the observer’s side of the
film, but it is often of less interest since the image is ‘inside out’. An ideal screen
for viewing this real image would be an item shaped similar to the original object,
which of course defeats the purpose of the hologram! To the extent that the film is
not flat or to the extent that the reference beam is not a plane wave, the phase of
E 2

ref (r) severely distorts the image. On the other hand, the virtual image previously
described never suffers from this problem.

Point
Object

Reference
Beam Film

Figure 12.7 Exposure to holo-
graphic film by a point source and
a reference plane wave. The holo-
graphic fringe pattern for a point
object and a plane wave reference
beam exposing a flat film is shown
on the right.

Example 12.1

Analyze the three field terms in (12.10) for a hologram made from a point object,
as depicted in Fig. 12.7.

Solution: Presumably, the point object is illuminated sufficiently brightly so as to
make the scattered light have an intensity similar to the reference beam at the film.

Let the reference plane wave strike the film at normal incidence. Then the reference
field will have constant amplitude and phase across it; call it Eref. The field from
the point object can be treated as a spherical wave:

Eobject

(
ρ
)= ErefL√

L2 +ρ2
e i k

p
L2+ρ2

(point source example) (12.11)

Here ρ represents the radial distance from the center of the film to some other
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point on the film. We have taken the amplitude of the object field to match Eref in
the center of the film.

After the film is exposed, developed, and re-illuminated by the reference beam, the
field emerging from the right-hand-side of the film, according to (12.10), becomes

Etransmitted

(
ρ
)∝ [

E 2
refL

2

L2 +ρ2 +E 2
ref

]
Eref +E 2

ref

ErefL√
L2 +ρ2

e i k
p

L2+ρ2

+E 2
ref

ErefL√
L2 +ρ2

e−i k
p

L2+ρ2
(12.12)

We see the three distinct waves that emerge from the holographic film. The first
term in (12.12) represents the plane wave reference beam passing straight through
the film with some variation in amplitude (depicted in Fig. 12.8 (a)). The second
term in (12.12) has the identical form as the field from the original object (aside
from an overall amplitude factor). It describes an outward-expanding spherical
wave, which gives rise to a virtual image at the location of the original point object,
as depicted in Fig. 12.8 (b). The final term in (12.12) corresponds to a converging
spherical wave, which focuses to a point at a distance L from the observer’s side of
the screen (depicted in Fig. 12.8 (c)).

Reference
beam Film

Undeflected
beam

Virtual
image

Reference
beam Film

Field associated
with virtual
image

Reference
beam

Film

Field associated
with real
image

Real
image

Figure 12.8 Reference beam inci-
dent on previously exposed holo-
graphic film. (a) Part of the beam
goes through. (b) Part of the beam
takes on the field profile of the
original object. undeflected. (c)
Part of the beam converges to a
real image of the original object.
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Exercises

Exercises for 12.1 Interferograms

P12.1 An ideal Michelson interferometer that uses flat mirrors is perfectly
aligned to a wide collimated laser beam. Suppose that one of the mir-
rors is then misaligned by 0.1◦. What is the spacing between adjacent
fringes on the screen if the wavelength is λ = 633 nm? What would
happen if, instead of tilting one of the mirrors, the angle of the input
beam (before the beamsplitter) changed by 0.1◦?

P12.2 An ideal Michelson interferometer uses flat mirrors perfectly aligned
to an expanding beam that diverges from a point 50 cm before the
beamsplitter. Suppose that one mirror is 10 cm away from the beam
splitter, and the other is 11 cm. Suppose also that the center of the
resulting bull’s-eye fringe pattern is dark. If a screen is positioned 10 cm
after the beam splitter, what is the radial distance to the next dark fringe
on the screen? Take the wavelength to be λ= 633 nm.

Exercises for 12.2 Testing Optical Surfaces

L12.3 Set up an interferometer and observe distortions to a mirror substrate
when the setscrew holding it is over tightened.

Exercises for 12.3 Generating Holograms

P12.4 Consider a diffraction grating as a simple hologram. Let the light from
the ‘object’ be a plane wave (object placed at infinity) directed onto a
flat film at angle θ. Let the reference beam strike the film at normal
incidence, and take the wavelength to be λ.

(a) What is the period of the fringes?

(b) Show that when re-illuminated by the reference beam, the three
terms in (12.10) give rise to zero-order and 1st-order diffraction (occur-
ring on each side of zero-order).

P12.5 (a) Show that the phase of the real image in (12.12) may be approxi-
mated as ∆φ = −kρ2/2L, aside from a spatially independent overall
phase. Compare with (11.10) and comment.

(b) This hologram is similar to a Fresnel zone plate, sometimes used to
focus extreme ultraviolet light or x-rays, since it is difficult to make a
lens otherwise at those wavelengths.6 Graph the field transmission for

6Tiny Fresnel zone plates can be made for this purpose using electron-beam lithography.
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the hologram as a function of ρ and superimpose a similar graph for a
‘best-fit’ mask that has regions of either 100% or 0% transmission (see
Fig. 12.9). Use λ = 10 nm and L = 107λ (this places the point source
about 32 cm before the screen).

Zone Plate 
Transmittance

Hologram
Transmittance

(m)

Figure 12.9 Field transmission for
a point-source hologram (upper)
and a Fresnel zone plate (middle),
and a plot of both as a function of
radius (bottom).

L12.6 Make a hologram.
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True and False Questions

R48 T or F: The eikonal equation and Fermat’s principle depend on the
assumption that the wavelength is relatively small compared to features
of interest.

R49 T or F: Fermat’s principle depends on the assumption that the index of
refraction varies only gradually.

R50 T or F: Fermat’s principle depends on the assumption that the angles
involved must not be too big.

R51 T or F: The imaging relation 1/ f = 1/do +1/di relies on the paraxial ray
approximation.

R52 T or F: Spherical aberration can be important even when the paraxial
approximation works well.

R53 T or F: Chromatic aberration (the fact that refractive index depends on
frequency) is an example of the violation of the paraxial approximation.

R54 T or F: The ABCD matrix for a complicated multi-element lens system
can be made to look like a single thin lens through the use of principal
planes.

R55 T or F: The spacing L between two flat mirrors can be chosen to make
a laser cavity stable.

R56 T or F: The spherical waves given by e i kR /R are exact solutions to
Maxwell’s equations.

R57 T or F: The Fresnel approximation falls within the paraxial approxima-
tion.

R58 T or F: Spherical waves can be used to understand diffraction from
apertures that are relatively large compared to λ.
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R59 T or F: The central peak of the Fraunhofer diffraction from two nar-
row slits separated by spacing h has the same width as the central
diffraction peak from a single slit with width ∆x = h.

R60 T or F: The central peak of the Fraunhofer diffraction from a circular
aperture of diameter D has the same width as the central diffraction
peak from a single slit with width ∆x = D .

R61 T or F: The array theorem is useful for deriving Fresnel diffraction from
a grating.

R62 T or F: A diffraction grating with a period h smaller than a wavelength
is ideal for making a spectrometer.

R63 T or F: The resolving power of a spectrometer used in a particular
diffraction order depends only on the number of lines illuminated (and
not on wavelength λ or grating spacing h).

R64 T or F: The Fraunhofer diffraction pattern appearing at the focus of a
lens varies in angular width, depending on the focal length of the lens
used.

R65 T or F: Fraunhofer diffraction can be viewed as a spatial Fourier trans-
form (or inverse transform if you prefer) on the field at the aperture.

Problems

R66 (a) Derive Snell’s law using Fermat’s principle.

(b) Derive the law of reflection using Fermat’s principle.

R67 (a) Consider a ray of light emitted from an object, which travels a
distance do before traversing a lens of focal length f and then traveling
a distance di .

object

image

Figure 12.10

Write a vector equation relating

[
y2

θ2

]
to

[
y1

θ1

]
. Be sure to simplify

the equation so that only one ABCD matrix is involved.

HINT:

[
1 0

−1/ f 1

]
,

[
1 d
0 1

]
(b) Explain the requirement on the ABCD matrix in part (a) that ensures
that an image appears for the distances chosen. From this requirement,
extract a familiar constraint on do and di . Also, make a reasonable
definition for magnification M in terms of y1 and y2, then substitute to
find M in terms of do and di .

(c) A telescope is formed with two thin lenses separated by the sum of
their focal lengths f1 and f2. The purpose of a telescope is to enlarge
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the apparent angle between points in the distant field of view. All rays
entering the telescope with angle θ1 are mapped into a (presumably)
larger angle θ2.

Figure 12.11

Give a sensible definition for angular magnification in terms of θ1

and θ2 and use the ABCD-matrix formulation to derive the angular
magnification of the telescope in terms of f1 and f2.

R68 (a) Show that a system represented by a matrix

[
A B
C D

]
(beginning

and ending in the same index of refraction) can be made to look like
the matrix for a thin lens if suitable distances p1 and p2 are appended
before and after the ABCD system.

HINT:

∣∣∣∣ A B
C D

∣∣∣∣= 1.

  

Figure 12.12

(b) Where are the principal planes located and what is the effective
focal length for two identical thin lenses with focal lengths f that are
separated by a distance d = f (see Fig. 12.12)?

R69 Derive the on-axis intensity (i.e. x, y = 0) of a Gaussian laser beam if
you know that at z = 0 the electric field of the beam is

E
(
ρ′, z = 0

)= E0e
− ρ′2

w2
0

Fresnel approximation:

E
(
x, y, z

)∼=− i e i kz e i k
2z (x2+y2)

λz

Ï
E

(
x ′, y ′,0

)
e i k

2z (x′2+y ′2)e−i k
z (xx′+y y ′)d x ′d y ′

∞∫
−∞

e−Ax2+B x+C d x =
√
π

A
e

B2

4A +C .

R70 (a) You decide to construct a simple laser cavity with a flat mirror and
another mirror having concave curvature of R = 100 cm. What is the
longest possible stable cavity that you can make?

HINT: Sylvester’s theorem is

[
A B
C D

]N

= 1

sinθ

[
A sin Nθ− sin(N −1)θ B sin Nθ

C sin Nθ D sin Nθ− sin(N −1)θ

]

where cosθ = 1
2 (A+D).

(b) The amplifier is YLF crystal, which lases at λ= 1054 nm. You decide
to make the cavity 10 cm shorter than the longest possible (i.e. found in
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part (a)). What is the value of w0, and where is the beam waist located
inside the cavity (the place we assign to z = 0)?

HINT: For a mode to exist in a laser cavity, the radius of curvature of
each of the end mirror matches the radius of curvature R (z) of the
beam at that location.

E
(
ρ, z

)= E0
w0

w (z)
e
− ρ2

w2(z) e i kz+i kρ2

2R(z) e−i tan−1 z
z0

ρ2 ≡ x2 + y2

w (z) ≡ w0

√
1+ z2/z2

0

R (z) ≡ z + z2
0 /z

z0 ≡
kw 2

0

2

R71 (a) Compute the Fraunhofer diffraction intensity pattern for a uni-
formly illuminated circular aperture with diameter D .

HINT: E
(
x, y, z

)∼=− i e i kz e i k
2z (x2+y2)
λz

∫∫
E

(
x ′, y ′,0

)
e−i k

z (xx ′+y y ′)d x ′d y ′

J0 (α) = 1
2π

2π∫
0

e±iαcos(θ−θ′)dθ′ ,
a∫
0

J0 (bx) xd x = a
b J1 (ab)

J1 (1.22π) = 0 , lim
x→0

2J1(x)
x = 1

(b) The objective lens of a telescope has a diameter D = 30 cm. You
wish to use the telescope to examine two stars in a binary system. The
stars are approximately 25 light-years away. How far apart need the
stars be (in the perpendicular sense) for you to distinguish them in the
visible range of λ= 500 nm? Compare with the radius of Earth’s orbit,
1.5×108 km, often call an astronomical unit.

R72 (a) Derive the Fraunhofer diffraction pattern for the field from a uni-
formly illuminated single slit with width ∆x. (Don’t worry about the
y-dimension.)

(b) Find the Fraunhofer intensity pattern for a grating with N slits
of width ∆x positioned on the mask at x ′

n = h
(
n − N+1

2

)
so that the

spacing between all slits is h.

HINT: The array theorem says that the diffraction pattern is
N∑

n=1
e−i k

z xx ′
n

times the diffraction pattern of a single slit. You will need

N∑
n=1

r n = r
r N −1

r −1

(c) Consider Fraunhofer diffraction from the grating in part (b). The
grating is 5.0 cm wide and is uniformly illuminated. For best resolution
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in a monochromator with a 50 cm focal length, what should the width
of the exit slit be? Assume λ= 500 nm.

R73 (a) A monochromatic plane wave with intensity I0 and wavelength λ is
incident on a circular aperture with diameter D followed by a lens with
focal length f (see Fig. 12.13). What is the intensity distribution at a
distance f behind the lens? Figure 12.13 Spatial filtering of a

Airy pattern.(b) You wish to ‘spatially filter’ the beam such that, when it emerges
from the focus, it varies smoothly without diffraction rings or hard
edges. A pinhole is placed at the focus, which transmits only the cen-
tral portion of the Airy pattern (inside of the first zero). Calculate the
intensity pattern at a distance f after the pinhole using the approxima-
tion given in the hint below.

Figure 12.14 Diffraction pattern
from a circular aperture (solid)
that is chopped by a pinhole to re-
move the diffraction rings (dotted).
A Gaussian field (dashed) approx-
imates the center portion that
transmits through the pinhole.

HINT: A reasonably good approximation of the transmitted field is
that of a Gaussian E

(
ρ,0

)= E f e−ρ
2/w 2

0 , where E f is the magnitude of
the field at the center of the focus found in part (a), and the width is
w0 = 2λ f #/π with f # ≡ f /D. Fig. 12.14 shows how well this Gaussian
approximation fits the actual curve. We have assumed that the first
aperture is a distance f before the lens so that at the focus after the
lens the wave front is flat. To avoid integration, you may want to use
the field provided in R70 and take the far-field limit: z ≫ z0.

Selected Answers

R70: (a) 100 cm (b) 0.32 mm.

R71: (b) 4.8×108 km.

R72: (c) 5 µm.





Chapter 13

Blackbody Radiation

Gustav Kirchhoff (1824–1887, Ger-
man) was born in Konigsberg, the son of
a lawyer. Kirchhoff attended the Univer-
sity of Konigsberg. While still a student,
he developed what are now called Kirch-
hoff’s law for electrical circuits. During
his career, Kirchhoff was a professor in
Breslau, Heidelberg, and finally Berlin.
Kirchhoff was one of the first to study the
spectra emitted by various objects when
heated. Not coincidentally, his colleague
in Heidelberg was Robert Bunsen, in-
ventor of the Bunsen burner. Kirchhoff
coined the term ‘blackbody’ radiation.
He demonstrated that an excited gas
gives off a discrete spectrum, and that
an unexcited gas surrounding a black-
body emitter produces dark lines in the
blackbody spectrum. Together Kirch-
hoff and Bunsen discovered caesium
and rubidium. Later in his career, Kirch-
hoff showed how to derive Fresnel’s
diffraction formula starting from the wave
equation. (Wikipedia)

Hot objects glow. In 1860, Kirchhoff proposed that the radiation emitted by hot
objects as a function of frequency is approximately the same for all materials.1

The notion that all materials behave similarly led to the concept of an ideal
blackbody radiator. Most materials have a certain shininess that causes light to
reflect or scatter in addition to being absorbed and reemitted. However, light
that falls upon an ideal blackbody is absorbed perfectly before the possibility of
reemission, hence the name blackbody.

The distribution of frequencies emitted by a blackbody radiator is related
to its temperature. We often consider a blackbody radiator that is in thermal
equilibrium with the surrounding light that is absorbed and reemitted. If it is
not in thermal equilibrium, for example, if more light is emitted than absorbed,
then the object inevitably cools as light escapes to the environment, moving the
system toward thermal equilibrium.

The Sun is a good example of a blackbody radiator. The light emitted from the
Sun is associated with its surface temperature. Any light that arrives to the Sun
from outer space is virtually 100% absorbed, however little light that might be, so
the name blackbody aptly describes it. Mostly, light escapes to the much colder
surrounding space (i.e. it is not in thermal equilibrium), and the temperature of
the Sun’s surface is maintained by the fusion process within. As another example,
a glowing tungsten filament in an ordinary light bulb may be reasonably described
as a blackbody radiator. However, surface reflections make it less than ideal both
for absorption and emission.

Experimentally, a near perfect blackbody radiator can be constructed from
a hollow object. An example is shown in Fig. 13.1. As the interior of the object
is heated, the light present inside the internal cavity is in equilibrium with the
glowing walls. A small hole can be drilled through the wall to observe the radiation
inside without significantly disturbing the system. The observation hole can be
thought of as a perfect blackbody since any light entering the hole from the
outside is eventually absorbed (before being potentially reemitted), if not on the

1An important exception is atomic vapors, which have relatively few discrete spectral lines.
However, Kirchhoff’s assumption holds quite well for most solids, which are sufficiently complex.
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https://en.wikipedia.org/wiki/Gustav_Kirchhoff
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first bounce then on subsequent bounces inside the cavity.
In this chapter, we develop a theoretical understanding of blackbody radiation

and provide some historical perspective. The explanation given by Max Planck
in 1900 marks the birth of quantum mechanics. He postulated the existence of
electromagnetic quanta, which we now call photons. Einstein used Planck’s ideas
to explain the photoelectric effect and to develop the concept of stimulated and
spontaneous emission. Because of his analysis, Einstein can be thought of as the
father (or maybe grandfather) of light amplification by stimulated emission of
radiation (LASER).

Figure 13.1 Blackbody radiator.
Thermal light emerges from the
small hole in the end.

13.1 Stefan-Boltzmann Law

One of the earliest properties deduced about blackbody radiation is known as the
Stefan-Boltzmann law, first suggested by Stefan in 1879 and derived thermody-
namically by Boltzmann in 1884.2 This early (somewhat cumbersome) derivation
is provided in appendix 13.A.3 The Stefan-Boltzmann law says that the intensity I
(including all frequencies) that flows outward from an object’s surface is given by

I = eσT 4, (13.1)

where σ is called the Stefan-Boltzmann constant and T is the absolute temper-
ature (in Kelvin) of the surface. The value of the Stefan-Boltzmann constant is
σ= 5.6696×10−8 W/m2 ·K4. The dimensionless parameter e, called the emissivity,
is equal to one for an ideal blackbody surface. However, it takes on smaller values
for actual materials because of surface reflections. For example, the emissivity
of tungsten is approximately e = 0.4. This takes into account surface reflections,
which make it harder for a material to emit light as well as to absorb light.4

As was mentioned in the introduction, one can construct an ideal blackbody
radiator from a material with e < 1 by creating an enclosure, or cavity, as depicted
in Fig. 13.2. A small hole in the wall behaves to the outside world like an ideal
blackbody surface. From the perspective of the outside world, the hole’s ‘surface’
has emissivity e = 1. Light within the cavity recirculates until it is eventually
absorbed. The intensity emerging from the hole automatically approaches that of
an ideal blackbody radiator.

Figure 13.2 Blackbody radiator
constructed as a cavity with a
small hole to sample the internal
light.

It is sometimes useful to express intensity in terms of the energy density of the
light field ufield (given by (2.53) in units of energy per volume). The connection
between the intensity emerging from the observation hole of a blackbody cavity
and the energy density of the thermal light within the cavity is

I = cufield

4
⇒ ufield = 4σT 4

c
(13.2)

2See P. W. Milonni, The Quantum Vacuum An Introduction to Quantum Electrodynamics, Sect.
1.2 (San Diego: Academic Press, 1994).

3It is less effort to obtain the Stefan-Boltzmann law using the Planck radiation formula as a
starting point (see P13.3).

4Emissivity typically has some frequency dependence, so what is presented here is an oversim-
plification.
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Within the enclosed cavity, light travels at speed c isotropically in all directions. A
factor of 1/2 arises because only half of the energy travels towards the hole from
within the cavity as opposed to away. The remaining factor of 1/2 occurs because
the light emerging from the hole is directionally distributed over a hemisphere,
rather than flowing in the direction of the surface normal n̂. The average over the
hemisphere is carried out as follows:

2π∫
0

dφ
π/2∫
0

r · n̂sinθdθ

2π∫
0

dφ
π/2∫
0

r sinθdθ

=

2π∫
0

dφ
π/2∫
0

r cosθ sinθdθ

2π∫
0

dφ
π/2∫
0

r sinθdθ

= 1

2
(13.3)

Although (13.1) describes the total intensity of the light that leaves a blackbody
surface, it does not describe what frequencies make up the radiation field. This
frequency distribution was not fully described for another two decades, when
Max Planck developed his famous formula. Planck was first to arrive at the correct
formula for the spectrum of blackbody radiation, building on the work of others,
most notably Wien, who came very close. At first, Planck tweaked Wien’s formula
to match newly available experimental data. When he attempted to explain
it, he was forced to introduce the concept of light quanta. Even Planck was
uncomfortable with and perhaps disbelieved the assumption that his formula
implied, but he deserves credit for recognizing and articulating it.

13.2 Failure of the Equipartition Principle

In 1900, Lord Rayleigh attempted to explain the blackbody spectral distribution
(intensity per frequency) as a function of temperature by applying the equipar-
tition theorem to the problem. James Jeans gave a more complete derivation in
1905, which included an overall proportionality constant. They were hopelessly
behind, since Planck nailed the answer in 1900, but their failed (classical) ap-
proach is useful pedagogically, and for that reason it gets more attention than it
deserves. In this section, we also will examine the Rayleigh-Jeans approach to
illustrate the shortcomings of classical concepts. This will help us better appreci-
ate the quantum ideas in the following section. As we will see, the Rayleigh-Jeans
approach actually gets the right answer in the long-wavelength limit. In fairness
to Rayleigh and Jeans, they represented their formula as being useful only for long
wavelengths.

The thermodynamic law of equipartition implies that the energy in a system
on the average is distributed equally among all degrees of freedom in the system.
For example, a system composed of oscillators (say, electrons attached to ‘springs’
representing the response of the material on the walls of a blackbody cavity)
has an energy of kBT /2 for each degree of freedom, where kB = 1.38×10−23J/K
is Boltzmann’s constant. Rayleigh and Jeans supposed that each unique mode
of the electromagnetic field should carry energy kBT just as each mechanical
spring in thermal equilibrium carries energy kBT (kBT /2 as kinetic and kBT /2 as
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potential energy). The problem then reduces to that of finding the number of
unique modes for the radiation at each frequency.5 The idea is that requiring each
mode of electromagnetic energy to hold energy kBT should reveal the spectral
shape of blackbody radiation.

Number of Modes in an Electromagnetic Field

Each frequency is associated with a wave-vector magnitude k =
√

k2
x +k2

y +k2
z .

Notice that there are many ways (i.e. combinations of kx , ky , and kz ) to come up
with the same k =ω/c. To count these ways properly, we can let our experience
with Fourier series guide us. Consider a box having length L on each side. The
Fourier theorem (0.42) states that the total field inside the box (no matter how
complicated the distribution) can always be represented as a superposition of sine
(and cosine) waves. The total field in the box can therefore be written as6

Re

{ ∞∑
n=−∞

∞∑
m=−∞

∞∑
ℓ=−∞

En,m,ℓe i(nk0x+mk0 y+ℓk0z)
}

(13.4)

where each component of the wave number in any of the three dimensions is an
integer times

k0 = 2π/L (13.5)

Considering a box of size L does not artificially restrict our analysis, since we may
later take the limit L →∞ so that our box represents the entire universe. Moreover,
L will naturally disappear from our calculation when we later consider the density
of modes.

Figure 13.3 The volume of a thin
spherical shell in n, m, ℓ space. We can think of a given wave number k as specifying the equation of a sphere in a

coordinate system with axes labeled n, m, and ℓ:

n2 +m2 +ℓ2 =
(

k

k0

)2

(13.6)

The fact that the integers n, m, and ℓ range over both positive and negative values
automatically takes into account that the field may travel in the forwards or the
backwards direction.

We need to know how many more ways there are to choose n, m, and ℓ when the
wave number k/k0 increases to (k +dk)/k0. The answer is the difference in the
volume of the two spheres shown in Fig. 13.3:

# modes in (k,k+dk)=
(
4π

k2

k2
0

)
dk

k0

(13.7)

This is the number of terms in (13.4) associated with a wave number between k
and k +dk.

5See O. Svelto, Principles of Lasers, 4th ed., translated by D. C. Hanna, Sect. 2.2.1 (New York:
Plenum Press, 1998).

6The Fourier expansion 13.4 implies that the field on the right and left of each dimension match
up, which is known as periodic boundary conditions.
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According to the Rayleigh-Jeans assumption, each mode should carry on
average equal energy kBT . The energy density associated with a specified range of
wave numbers dk is then kBT /L3 times the number of modes within that range
(13.7).

The total energy density in the field involving all wave numbers is then7

ufield =
∞∫

0

2× kBT

L3 × 4πk2

k3
0

dk = kBT

∞∫
0

k2

π2 dk (13.8)

where the extra factor of 2 accounts for two independent polarizations, not speci-
fied in (13.4). As anticipated, the dependence on L has disappeared from (13.8)
after substituting from (13.5).

James Jeans (1877–1946, English)
was born in Ormskirk, England. He at-
tended Cambridge University and later
taught there for most of his career. He
also taught at Princeton University for
a number of years. One of his major
contributions was the development of
Jeans length, the critical radius for inter-
stellar clouds, which determines whether
a cloud will collapse to form a star. In
his later career, Jeans became some-
what well known to the public for his
lay-audience books highlighting scien-
tific advances, in particular relativity and
cosmology. (Wikipedia)

We can immediately see that (13.8) disagrees drastically with the Stefan-
Boltzmann law (13.2), since (13.8) is proportional to temperature rather than
to its fourth power. In addition, the integral in (13.8) is seen to diverge, meaning
that regardless of the temperature, the light carries infinite energy density! This
has since been named the ultraviolet catastrophe since the divergence occurs
on the short wavelength end of the spectrum. This is a clear failure of classical
physics to explain blackbody radiation. Nevertheless, Rayleigh emphasized the
fact that his formula works well for the longer wavelengths.

It is instructive to make the change of variables k =ω/c in the integral to write

ufield = kBT

∞∫
0

ω2

π2c3 dω (13.9)

The important factorω2/π2c3 can now be understood to be the number of modes
per frequency. Then (13.9) is rewritten as

ufield =
∞∫

0

ρ (ω)dω (13.10)

where

ρRayleigh-Jeans (ω) = kBT
ω2

π2c3 (13.11)

describes (incorrectly) the spectral energy density of the radiation field associated
with blackbody radiation.

13.3 Planck’s Formula

In the late 1800’s as spectrographic technology improved, experimenters acquired
considerable data on the spectra of blackbody radiation. For the first time, de-
tailed maps of the intensity per frequency associated with blackbody radiation

7See O. Svelto, Principles of Lasers, 4th ed., translated by D. C. Hanna, Sect. 2.2.2 (New York:
Plenum Press, 1998).

https://en.wikipedia.org/wiki/James_Jeans
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became available over a fairly wide wavelength range. In keeping with Kirchhoff’s
notion of an ideal blackbody radiator, the results were observed to be indepen-
dent of the material for most solids. The intensity per frequency depended only
on temperature and when integrated over all frequencies agreed with the Stefan-
Boltzmann law (13.1).

Wilhelm Wien (1864–1928, German)
was born in Gaffken, Prussia (now
Primorsk, Russia). As a teenager, he
attended schools in Rastenburg and
then Heidelberg. He later attended the
University of Göttingen and then the
University of Berlin. In 1886, he received
his Ph.D. after working under Hermann
von Helmholtz where he studied the in-
fluence of materials on the color of light.
In 1896 Wien developed an empirical
formula for the spectral distribution of
blackbody radiation. He collaborated
with Planck, who gave the law a founda-
tion in electromagnetic and thermody-
namic theory. Planck later improved the
formula, whereupon it became known by
his name. However, Wien’s formula for
the peak wavelength of the blackbody
curve, called Wien’s displacement law,
remains valid. In 1898, Wien identified a
positive particle equal in mass to the hy-
drogen atom, which was later named the
proton. Wien received the Nobel prize in
1911 for his work on heat and radiation.
(Wikipedia)

In 1896, Wilhelm Wien considered the known physical and mathematical
constraints on the spectrum of blackbody radiation and proposed a spectral
function that seemed to work:8

ρWien (ω) = ħω3e−ħω/kBT

π2c3 (13.12)

An important feature of (13.12) is that it gives a result proportional to T 4 when
integrated over all frequency ω (i.e. the Stefan-Boltzmann law).

Wien’s formula did a fairly good job of fitting the experimental data. However,
in 1900 Lummer and Pringshein, colleagues of Max Planck, reported experimental
data that deviated from the Wien distribution at long wavelengths (infrared).
Planck was privy to this information early on and introduced a modest revision
to Wien’s formula that fit the data beautifully everywhere:

ρPlanck (ω) = ħω3

π2c3
[
eħω/kBT −1

] (13.13)

where ħ= 1.054×10−34J · s is an experimentally determined constant.9

Figure 13.4 shows the Planck spectral distribution curve together with the
Rayleigh-Jeans curve (13.11) and the Wien curve (13.12). As is apparent, the Wien
distribution does a good job nearly everywhere. However, at long wavelengths
it was off by just enough for the experimentalists to notice that something was
wrong.

At this point, it may seem fair to ask, “What did Planck do that was so great?”
After all, he simply guessed a function that was only a slight modification of
Wien’s distribution. And he knew the ‘answer from the back of the book’, namely
Lummer’s and Pringshein’s well done experimental results. (At the time, Planck
was unaware of the work by Rayleigh.)

0 2 4 6 8 10

Figure 13.4 Energy density per
frequency according to Planck,
Wien, and Rayleigh-Jeans.

Planck gets well-deserved credit for interpreting the meaning of his new
formula. His interpretation was what he called an “act of desperation.” He did
not necessarily believe in the implications of his formula; in fact, he presented
them somewhat apologetically. It was several years later that the young Einstein
published his paper explaining the photoelectric effect in the context of Planck’s
work.

Planck’s insight was an enormous step toward understanding the quantum
nature of light. Nevertheless, it took another three decades to develop a more

8The constant h had not yet been introduced by Planck. The actual way that Wien wrote his
distribution was ρWien (ω) = aω3e−bω/T , where a and b were parameters used to fit the data.

9Planck’s constant was first introduced as h = 6.626×10−34J · s, convenient for working with
frequency ν, expressed in Hz. It is common to write ħ ≡ h/2π when working with frequency ω,
expressed in rad/s.

https://en.wikipedia.org/wiki/Wilhelm_Wien
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complete theory of quantum electrodynamics. Students can take comfort in the
fact that the very people who developed quantum mechanics were also bothered
by its confrontation with deep-seated intuition. If quantum mechanics bothers
you, you are in good company!

Planck found that he could derive his formula only if he made the following
strange assumption: A given mode of the electromagnetic field is not able to
carry an arbitrary amount of energy (for example, kBT as Rayleigh and Jeans used,
which varies continuously as a function of temperature). Rather, a field mode
can only carry discrete amounts of energy separated by spacing ħω. Under this
assumption, the probability Pn that a mode of the field is excited to the nth level
is proportional to the Boltzmann statistical weighting factor e−nħω/kBT . A review
of the Boltzmann factor is given in Appendix 13.B.

Max Planck (1858–1947, German) was
born in Kiel, the sixth child in his family.
His father was a law professor. When
Max was about nine years old, his family
moved to Munich where he attended
gymnasium. A mathematician, Herman
Muller took an interest in his schooling
and tutored him in mechanics and as-
tronomy. Planck was a gifted musician,
but he decided to pursue a career in
physics. At age 16 he enrolled in the
University of Munich. By age 22, he
had finished his doctoral dissertation
and habilitation thesis. He was initially
ignored by the academic community
and worked for a time as an unpaid lec-
turer. He became an associate professor
of theoretical physics at the University
of Kiel and then a few years later took
over Kirchhoff’s post at the University
of Berlin. After nearly twenty years of
idyllic and happy family life, a series
of tragedies hit the Planck household.
Planck’s first wife and mother of four,
died. Then his eldest son was killed
in action during World War I. Soon af-
ter, his twin daughters each died giving
birth to their first child. Later Planck’s
remaining son from his first marriage
was executed for participating in a failed
attempt to assassinate Hitler. Planck
won the Nobel prize in 1918 for his in-
troduction of energy quanta, but he had
serious reservations about the course
that quantum mechanics theory took.
(Wikipedia)

Probable Energy in Each Field Mode

The Boltzmann factor can be normalized by dividing by the sum of all such factors
to obtain the probability of having energy nħω in a particular mode:

Pn = e−nħω/kBT

∞∑
m=0

e−mħω/kBT
= e−nħω/kBT

[
1−e−ħω/kBT

]
(13.14)

We used (0.66) to accomplish the above sum, which is a geometric series.

The expected energy in a particular mode of the field is the sum of each possible
energy level (i.e. nħω) times the probability of its occurrence:

∞∑
n=0

nħωPn =ħω
[

1−e−ħω/kBT
] ∞∑

n=0
ne−nħω/kBT

=ħω
[

1−e−ħω/kBT
] ∂

∂ (ħω/kBT )

∞∑
n=0

e−nħω/kBT

=−ħω
[

1−e−ħω/1−kBT
] ∂

∂ (ħω/kBT )

1

1−e−ħω/kBT

= ħω
eħω/kBT −1

(13.15)

We used (0.66) again as well as a clever derivative trick.

Equation (13.15) provides the expected energy in any of the modes of the radi-
ation field, as dictated by Planck’s assumption. To obtain the Planck distribution
(13.13), we replace kBT in the Rayleigh-Jeans formula (13.10) with the correct
expected energy (13.15).10

It is interesting that we are now able to derive the constant in the Stefan-
Boltzmann law (13.2) in terms of Planck’s constant ħ (see P13.3). The Stefan-
Boltzmann law is obtained by integrating the spectral density function (13.13)

10See O. Svelto, Principles of Lasers, 4th ed., translated by D. C. Hanna, Sect. 2.2.2 (New York:
Plenum Press, 1998).

https://en.wikipedia.org/wiki/Max_Planck
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over all frequencies to obtain the total field energy density, which is in thermal
equilibrium with the blackbody radiator:

ufield =
∞∫

0

ρPlanck (ω)dω= 4

c

π2k4
B

60c2ħ3 T 4 ≡ 4

c
σT 4 (13.16)

Since Planck’s constant was not introduced until a couple decades after the Stefan-
Boltzmann law was developed, one might more appropriately say that the Stefan-
Boltzmann constant pins down Planck’s constant.

Example 13.1

Determine ρPlanck (λ) such that

ufield =
∞∫

0

ρPlanck (ω)dω=
∞∫

0

ρPlanck (λ)dλ

where ρPlanck (ω) and ρPlanck (λ) represent distinct functions distinguished by their
arguments.

Solution: The change of variables λ≡ 2πc/ω⇒ dω=−2πcdλ/λ2 gives

ufield =
0∫

∞

ħ (2πc/λ)3

π2c3
[
eħ(2πc/λ)/kBT −1

] (
−2πc

dλ

λ2

)
=

∞∫
0

16ħc

λ5
[
e2πħc/λkBT −1

]dλ

By inspection, we get

ρPlanck (λ) = 8πhc

λ5
[
ehc/λkBT −1

] (13.17)

where we have written h ≡ 2πħ. It is interesting to note that the maximum of
ρPlanck (λ) occurring at λmax and the maximum of ρPlanck (ω), occurring at ωmax, do
not correspond to a matching wavelength and frequency. That is, λmax ̸= 2πc/ωmax,
because of the nonlinear nature of the variable transformation. (See problem
P13.4.)

Figure 13.5 Blackbody spectrum
(13.17) plotted for the surface tem-
perature of three stars: Sirius (9900
K), the Sun (5750 K), and Betel-
geuse (3300 K).

184 K

273 K

294 K

310 K

330 K

Figure 13.6 Blackbody spectrum
(13.17) plotted for Earth’s record
cold temperature (184 K Antarc-
tica), a typical winter day (273 K),
room temperature (294 K), a typ-
ical summer day (310 K), Earth’s
record hot temperature (330 K
Death Valley).

Figure 13.7 Blackbody spectrum
(13.17) of the cosmic microwave
background radiation that per-
vades the universe (2.7 K).

13.4 Einstein’s A and B Coefficients

More than a decade after Planck introduced his formula, and after Niels Bohr
had proposed that electrons occupy discrete energy states in atoms, Einstein
reexamined blackbody radiation in terms of Bohr’s new idea. If the material of a
blackbody radiator interacts with a particular mode of the field with frequency
ω, then electrons in the material must make transitions between two energy
levels with energy separation hω. Since the radiation of a blackbody is in ther-
mal equilibrium with the material, Einstein postulated that the field stimulates
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electron transitions between energy levels. In addition, he postulated that some
transitions must occur spontaneously.

Einstein wrote down rate equations for populations of the two levels N1 and
N2 associated with the transition ħω:11

Ṅ1 = A21N2 −B12ρ (ω) N1 +B21ρ (ω) N2,

Ṅ2 =−A21N2 +B12ρ (ω) N1 −B21ρ (ω) N2
(13.18)

The coefficient A21 is the rate of spontaneous emission from state 2 to state 1,
B12ρ (ω) is the rate of stimulated absorption from state 1 to state 2, and B21ρ (ω)
is the rate of stimulated emission from state 2 to state 1. He supposed that the
rate of stimulated transitions ought to be proportional to spectral density ρ (ω).

Albert Einstein (1879–1955, German)
is without a doubt the most famous sci-
entist in history. Time Magazine named
him Person of the Century. Born in
Ulm to a (non-practicing) Jewish fam-
ily, young Albert was influenced by a
medical student, Max Talmud, who took
meals with his family and enthusiasti-
cally introduced the 10-year-old Albert
to geometry and other topics. Einstein’s
father wanted Albert to be trained as an
electrical engineer, but Albert clashed
with his teachers in that program and
withdrew. Einstein then attended school
in Switzerland, and subsequently en-
tered a mathematics program at the
Polytechnic in Zurich. There, Einstein
met his first wife, Mileva Maric, a fellow
math student, who he later divorced be-
fore marrying Elsa Lowenthal. Early on,
Einstein could not find a job as a pro-
fessor, and so he worked in the Swiss
patent office until his "Miracle Year"
(1905), when he published four ma-
jor papers, including relativity and the
photoelectric effect (for which he later
received the Nobel prize). Thereafter,
job offers were never in short supply. In
1933, as the Nazi regime came to power,
Einstein emigrated from Germany to the
US and became a professor at Princeton
University. Einstein is most noted for
special and general relativity, for which
he became a celebrity scientist in his
own lifetime. Einstein also made huge
contributions to statistical and quantum
mechanics. (Wikipedia)

In thermal equilibrium, the rate equations (13.18) are both equal to zero (i.e.,
Ṅ1 = Ṅ2 = 0), since the relative populations of each level must remain constant.
We can then solve for the spectral density ρ (ω) at the given frequency. In this case,
either expression in (13.18) yields

ρ (ω) = A21
N1
N2

B12 −B21

(13.19)

In thermal equilibrium, the spectral density must match the Planck spectral
density formula (13.13). In making the comparison, we should first rewrite the
ratio N1/N2 of the populations in the two levels using the Boltzmann probability
factor (see appendix 13.B):

N1

N2
= e−E1/kBT

e−E2/kBT
= e(E2−E1)/kBT = ehω/kBT (13.20)

Then when equating (13.19) to the Planck blackbody spectral density (13.13) we
get

A21

eħω/kBT B12 −B21
= ħω3

π2c3
[
eħω/kBT −1

] (13.21)

From this expression we deduce that12

B12 = B21 (13.22)

and

A21 = ħω3

π2c3 B21 (13.23)

We see from (13.22) that the rate of stimulated absorption is the same as the rate
of stimulated emission. In addition, if one knows the rate of stimulated emission
between a pair of states, it follows from (13.23) that one also knows the rate of

11See P. W. Milonni, The Quantum Vacuum An Introduction to Quantum Electrodynamics, Sect.
1.8 (San Diego: Academic Press, 1994).

12We assume that energy levels 1 and 2 are non-degenerate. Some modifications must be made
in the case of degenerate levels, but the procedure is similar.

https://en.wikipedia.org/wiki/Albert_Einstein
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spontaneous emission. This is remarkable because to derive A21 directly, one
needs quantum electrodynamics (the complete photon description). However,
to obtain B21, it is actually only necessary to use a semiclassical theory, where
the light is treated classically and the energy levels in the material are treated
quantum-mechanically using the Schrödinger equation.

In writing the rate equations, (13.18), Einstein predicted the possibility of
creating lasers fifty years in advance of their development. These rate equations
are still valid even if the light is not in thermal equilibrium with the material.
The equations suggest that if the population in the upper state 2 can be made
artificially large, then amplification will result via the stimulated transition. The
rate equations also show that a population inversion (more population in the
upper state than in the lower one) cannot be achieved by ‘pumping’ the material
with the same frequency of light that one hopes to amplify. This is because the
stimulated absorption rate is balanced by the stimulated emission rate. The
material-dependent parameters A21 and B12 = B21 are called the Einstein A and B
coefficients.

Appendix 13.A Thermodynamic Derivation of the Stefan-
Boltzmann Law

In this appendix, we derive the Stefan-Boltzmann law without relying on the
Planck blackbody formula.13 This derivation is included mainly for historical
interest. The derivation relies on the 1st and 2nd laws of thermodynamics.

Consider a container whose walls are all at the same temperature and in
thermal equilibrium with the radiation field inside. Notice that the units of energy
density ufield (energy per volume) are equivalent to force per area, or in other
words pressure. It turns out that the radiation exerts a pressure of

P = ufield/3 (13.24)

on the walls of the container. This can be derived from the fact that radiation of
energy ∆E imparts a momentum

∆p = ∆E

c
cosθ (13.25)

when it is absorbed with incident angle θ on a surface.14 A similar momentum is
imparted when radiation is emitted.

Derivation of (13.24)

13See P. W. Milonni, The Quantum Vacuum An Introduction to Quantum Electrodynamics, Sect.
1.2 (San Diego: Academic Press, 1994).

14The fact that light carries momentum was understood well before the development of the
theory of relativity and the photon description of light.
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Consider a thin layer of space adjacent to a container wall with area A. If the layer
has thickness ∆z, then the volume in the layer is A∆z. Half of the radiation inside
the layer flows toward the wall, where it is absorbed. The total energy in the layer
that will be absorbed is then ∆E = (A∆z)ufield/2, which arrives during the interval
∆t =∆z/(c cosθ), assuming for the moment that all light is directed with angle θ;
we must average the angle of light propagation over a hemisphere.

The pressure on the wall due to absorption (i.e. force or d p/d t per area) is then

Pabs =

2π∫
0

dφ
π/2∫
0

∆p
∆t

1
A sinθ dθ

2π∫
0

dφ
π/2∫
0

sinθ dθ

= ufield

2

π/2∫
0

cos2θ sinθ dθ = ufield

6
(13.26)

In equilibrium, an equal amount of radiation is also emitted from the wall. This
gives an additional pressure Pemit = Pabs, which confirms that the total pressure is
given by (13.24).

Figure 13.8 Field inside a black-
body radiator.

We derive the Stefan-Boltzmann law using the concept of entropy, which is
defined in differential form by the quantity

dS ≡ dQ

T
(13.27)

where dQ is the injection of heat (or energy) into the radiation field in the box
and T is the temperature at which that injection takes place. We would like to
write dQ in terms of ufield, V , and T . Then we may invoke the fact that S is a state
variable, which implies

∂2S

∂T∂V
= ∂2S

∂V ∂T
(13.28)

This is a mathematical statement of the fact that S is fully defined if the internal
energy, temperature, and volume of a system are specified. That is, S does not
depend on past temperature and volume history; it is dictated by the present
state of the system.

To obtain dQ in the form that we need, we can use the 1st law of thermody-
namics. It states that a change in internal energy dU = d (ufieldV ) can take place
by the injection of heat dQ or by doing work dW = PdV as the volume increases:

dQ = dU +PdV = d (ufieldV )+PdV

=V dufield +ufielddV + 1

3
ufielddV

=V
dufield

dT
dT + 4

3
ufielddV

(13.29)

We have used energy density times volume to obtain the total energy U in the radi-
ation field in the box. We have also used (13.24) to obtain the work accomplished
by pressure as the volume changes.
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We can use (13.29) to rewrite (13.27) as

dS = V

T

dufield

dT
dT + 4ufield

3T
dV (13.30)

When we differentiate (13.30) with respect to temperature or volume we get

∂S

∂V
= 4ufield

3T
∂S

∂T
= V

T

dufield

dT

(13.31)

We are now able to evaluate the partial derivatives in (13.28), which give

∂2S

∂T∂V
= 4

3

∂

∂T

ufield

T
=4

3

1

T

∂ufield

∂T
− 4

3

ufield

T 2

∂2S

∂V ∂T
= 1

T

dufield

dT

(13.32)

Since by (13.28) these two expressions must be equal, we get a differential
equation relating the internal energy of the system to the temperature:

4

3

1

T

∂ufield

∂T
− 4

3

ufield

T 2 = 1

T

dufield

dT
⇒ ∂ufield

∂T
= 4ufield

T
(13.33)

The solution to this differential equation is (13.2), where 4σ/c is a constant to be
determined experimentally.

Appendix 13.B Boltzmann Factor

The entropy of an object is defined by

Sobj = kB lnnobj (13.34)

which depends on the number of configurations nobj for a given state (defined,
for example, by fixed energy and volume). Now imagine that the object is placed
in contact with a very large thermal reservoir. The ‘object’ could be the electro-
magnetic radiation inside a hollow blackbody apparatus, and the reservoir could
be the walls of the apparatus, capable of holding far more energy than the light
field can hold. The condition for thermal equilibrium between the object and the
reservoir is

∂Sobj

∂Uobj

= ∂Sres

∂Ures

≡ 1

T
(13.35)

where temperature has been introduced as a definition, which is consistent with
(13.27).

The total number of configurations for the combined system is N = nobjnres,
where nobj and nres are the number of configurations available within the object
and the reservoir separately. A thermodynamic principle is that all possible
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configurations are equally probable. In thermal equilibrium, the probability for a
given configuration in the object is therefore proportional to

P ∝ N

nobj

= nres = eSres/kB (13.36)

where we have invoked (13.34).
Meanwhile, a Taylor’s series expansion of Sres yields

Sres (Ures) ∼= Sres

(
U eq

res

)+ ∂Sres

∂Ures

∣∣∣∣
U eq

res

(
Ures −U eq

res

)+ ... (13.37)

Higher order terms are not needed since we assume the reservoir to be very large
so that it is disturbed only slightly by variations in the object. Since the overall
energy of the system is fixed, we may write

Ures −U eq
res =∆Ures =−∆Uobj (13.38)

where ∆Uobj is a small change in energy in the object. When (13.35), (13.37), and
(13.38) are introduced into (13.36), the probability for the specific configuration

becomes P ∝ e
1

kB
Sres(U eq

res)−
∆Uob j

kBT , or simply

P ∝ e
− ∆Uob j

kBT (13.39)

since the first term in the exponent is constant. ∆Uobj represents an amount
energy added to the object to establish a configuration. In the case of blackbody
radiation, a mode takes on energy ∆Uobj = nħω, where n is the number of energy
quanta in the mode. The probability that a mode carries energy nħω is therefore

proportional to e
− nħω

kBT .
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Exercises

Exercises for 13.1 Stefan-Boltzmann Law

P13.1 The Sun has a radius of RS = 6.96×108 m. What is the total power that
it radiates, given a surface temperature of 5750 K?

P13.2 A 1 cm-radius spherical ball of polished gold hangs suspended inside
an evacuated chamber that is at room temperature 20◦C. There is no
pathway for thermal conduction to the chamber wall.

(a) If the gold is at a temperature of 100◦C, what is the initial rate of
temperature loss in ◦C/s? The emissivity for polished gold is e = 0.02.
The specific heat of gold is 129 J/kg · ◦C and its density is 19.3 g/cm3.

HINT: Q = mc∆T and Power =Q/∆t . You should consider the power
flowing both ways.

(b) What is the initial rate of temperature loss if the ball is coated with
flat black paint, which has emissivity e = 0.95?

Exercises for 13.3 Planck’s Formula

P13.3 Derive (or try to derive) the Stefan-Boltzmann law by integrating the

(a) Rayleigh-Jeans energy density

ufield =
∞∫

0

ρRayleigh-Jeans (ω)dω

Please comment.

(b) Wien energy density

ufield =
∞∫

0

ρWien (ω)dω

Please evaluate σ.

HINT:
∞∫
0

x3e−ax d x = 6
a4 .

(c) Planck energy density

ufield =
∞∫

0

ρPlanck (ω)dω

Please evaluate σ. Compare results of (b) and (c).

HINT:
∞∫
0

x3d x
eax−1 = π4

15a4 .
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P13.4 (a) Derive Wien’s displacement law

λmax = 0.00290 m ·K

T

which gives the strongest wavelength present in the blackbody spectral
distribution.

HINT: See Example 13.1. You may like to know that the solution to the
transcendental equation (5−x)ex = 5 is x = 4.965.

(b) What is the strongest wavelength emitted by the Sun, which has a
surface temperature of 5750 K (see P13.1)?

(c) Repeat the problem to find ωmax and show that λmax
ωmax

2π ̸= c. (We
naturally observe λmax when making a measurement using a grating
spectrometer.) HINT: The solution to (3−x)ex = 3 is x = 2.821
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Fabry-Perot setup, 100
Fabry-Perot, free spectral range, 102
Fabry-Perot, resolution, 102
far field, 259, 266
Faraday’s law, 25, 29, 44
Faraday, Michael, 29
fast axis of a wave plate, 151
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inverse Fourier transform, 175
inverse matrix, 11
irradiance, 55, 56
isotropic medium, 57, 121
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negative crystal, 128
Newton, Isaac, 230
nonlinear optics, 41
normal to a surface, 6

object, 237
objective lens, 246
obliquity factor, 264
optic axes of a crystal, 127
optical activity, 164
optical axis, 230, 237
optical path length, 234
optical systems, 246
ordinary, 128
oscillator strength, 52

p-polarized light, 74, 91
paraxial approximation, 230, 237
paraxial rays, 230, 236
paraxial wave equation, 265, 266
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phase delay, 180
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photometry, 58
photon, 318
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Planck, Max, 323
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plane waves, 43, 45
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polarization of a material, 34
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positive crystal, 128
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239
reflection from a metal, 83
refraction, 73, 75
refraction for a crystal, 129
refractive index, 46
reshaping delay, 185
resolution, 277, 282
resolution, Fabry-Perot, 102
resolution, telescope, 281
resolving power, 104, 288
retarder, 151
right-hand rule, 3
ring cavity, 248
Roemer, Ole, 41
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Physical Constants

Constant Symbol Value

Permittivity ϵ0 8.8542×10−12 C2/N ·m2

Permeability µ0 4π×10−7 T ·m/A (or kg ·m
/

C2 )
Speed of light in vacuum c 2.9979×108 m/s
Charge of an electron qe 1.602×10−19 C
Mass of an electron me 9.108×10−31 kg
Boltzmann’s constant kB 1.380×10−23 J/K
Plancks constant h 6.626×10−34 J · s

ħ 1.054×10−34 J · s
Stefan-Boltzmann constant σ 5.670×10−8 W/m2 ·K4

Integrals and Sums

∫ ∞

−∞
e−ax2+bx+c d x =

√
π

a
e

b2

4a +c (Re{a} > 0) (0.55)∫ ∞

0

e i ax

1+x2/b2 d x = π |b|
2

e−|ab| (b > 0) (0.56)∫ 2π

0
e±i a cos(θ−θ′) dθ = 2πJ0 (a) (0.57)∫ a

0
J0 (bx) x d x = a

b
J1 (ab) (0.58)∫ ∞

0
e−ax2

J0 (bx) x d x = e−b2/4a

2a
(0.59)∫ ∞

0

sin2(ax)

(ax)2 d x = π

2a
(0.60)∫

d y[
y2 + c

]3/2
= y

c
√

y2 + c
(0.61)

∫
d x

x
p

x2 − c
=− 1p

c
sin−1

p
c

|x| (0.62)∫ π

0
sin(ax)sin(bx) d x =

∫ π

0
cos(ax)cos(bx) d x = π

2
δab (a,b integer) (0.63)

N∑
n=0

r n = 1− r N+1

1− r
(0.64)

N∑
n=1

r n = r (1− r N )

1− r
(0.65)

∞∑
n=0

r n = 1

1− r
(r < 1) (0.66)
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